Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MAIS_2007_14_2_a2, author = {G. R. Chelnokov}, title = {On the number of restrictions determining a periodical sequence}, journal = {Modelirovanie i analiz informacionnyh sistem}, pages = {12--16}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a2/} }
G. R. Chelnokov. On the number of restrictions determining a periodical sequence. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 12-16. http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a2/
[1] V. A. Ufnarovskii, “Kombinatornye i asimptoticheskie metody v algebre”, Itogi nauki i tekhniki. Ser. Sovr. probl. matematiki. Fundamentalnye napravleniya, 57, VINITI, M., 1990, 5–177 | MR
[2] A. G. Kurosh, “Problemy teorii kolets, svyazannye s problemmoi Bernsaida o periodicheskikh gruppakh”, Izv. AN SSSR ser. mat., 5 (1941), 233–240
[3] A. Ya. Belov, V. V. Borisenko, V. N. Latyshev, “Monomialnye algebry”, Itogi nauki i tekhniki. Ser. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 26, VINITI, M., 2002, 35–214
[4] R. Uilson, Vvedenie v teoriyu grafov, Mir, M., 1977, 208 pp. | MR
[5] J.-P. Allouche, J. Shallit, Automatic sequences. Theory, applications, generalizations, Cambridge Univercity Press, Cambridge, 2003, 571 pp. | MR | Zbl
[6] J. P. Bell, “Examples in finite Gel'fand-Kirilov dimension”, J. Algebra, 263:1 (2003), 159–175 | DOI | MR | Zbl