Andronov-Hopf bifurcation for relay systems
Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 75-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe the structure of a monodromy matrix of periodic solutions for relay systems that makes it possible to derive the general criterion for the orbital exponential stability of the cycle. The given theorem is used to develop an analog to the Andronov-Hopf bifurcation theorem.
@article{MAIS_2007_14_2_a15,
     author = {O. A. Chernysheva},
     title = {Andronov-Hopf bifurcation for relay systems},
     journal = {Modelirovanie i analiz informacionnyh sistem},
     pages = {75--82},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a15/}
}
TY  - JOUR
AU  - O. A. Chernysheva
TI  - Andronov-Hopf bifurcation for relay systems
JO  - Modelirovanie i analiz informacionnyh sistem
PY  - 2007
SP  - 75
EP  - 82
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a15/
LA  - ru
ID  - MAIS_2007_14_2_a15
ER  - 
%0 Journal Article
%A O. A. Chernysheva
%T Andronov-Hopf bifurcation for relay systems
%J Modelirovanie i analiz informacionnyh sistem
%D 2007
%P 75-82
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a15/
%G ru
%F MAIS_2007_14_2_a15
O. A. Chernysheva. Andronov-Hopf bifurcation for relay systems. Modelirovanie i analiz informacionnyh sistem, Tome 14 (2007) no. 2, pp. 75-82. http://geodesic.mathdoc.fr/item/MAIS_2007_14_2_a15/

[1] Yu. S. Kolesov, “Periodicheskie resheniya releinykh sistem s raspredelennymi parametrami”, Matem. sb., 83:3 (1970), 349–371 | MR | Zbl

[2] Yu. S. Kolesov, V. S. Kolesov, I. I. Fedik, Avtokolebaniya v sistemakh s raspredelennymi parametrami, Naukova dumka, Kiev, 1979, 162 pp. | Zbl

[3] E. F. Mischenko, Yu. S. Kolesov, A. Yu. Kolesov, N. Kh. Rozov, Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995, 336 pp. | MR

[4] A. A. Andronov, A. A. Vitt, S. E. Khaikin, Teoriya kolebanii, Fizmatgiz, M., 1959, 916 pp.

[5] D. V. Anosov, “Ob ustoichivosti polozhenii ravnovesiya releinykh sistem”, Avtom. i telemekh., 20:2 (1959), 135–139 | MR

[6] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967, 472 pp. | MR