Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 6, pp. 1185-1195
Cet article a éte moissonné depuis la source Numdam
Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized.
Classification :
65J99, 65Z05
Keywords: Min-plus eigenvalue problems, numerical analysis, Frenkel-kontorova model, Hamilton-Jacobi equations
Keywords: Min-plus eigenvalue problems, numerical analysis, Frenkel-kontorova model, Hamilton-Jacobi equations
@article{M2AN_2001__35_6_1185_0,
author = {Baca\"er, Nicolas},
title = {Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, {Frenkel-Kontorova} models and homogenization of {Hamilton-Jacobi} equations},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
pages = {1185--1195},
year = {2001},
publisher = {EDP-Sciences},
volume = {35},
number = {6},
mrnumber = {1873522},
zbl = {1037.65054},
language = {en},
url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/}
}
TY - JOUR AU - Bacaër, Nicolas TI - Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2001 SP - 1185 EP - 1195 VL - 35 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/ LA - en ID - M2AN_2001__35_6_1185_0 ER -
%0 Journal Article %A Bacaër, Nicolas %T Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2001 %P 1185-1195 %V 35 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/ %G en %F M2AN_2001__35_6_1185_0
Bacaër, Nicolas. Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 6, pp. 1185-1195. http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/
