Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations
ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 6, pp. 1185-1195

Voir la notice de l'article provenant de la source Numdam

Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized.

Classification : 65J99, 65Z05
Keywords: Min-plus eigenvalue problems, numerical analysis, Frenkel-kontorova model, Hamilton-Jacobi equations
@article{M2AN_2001__35_6_1185_0,
     author = {Baca\"er, Nicolas},
     title = {Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, {Frenkel-Kontorova} models and homogenization of {Hamilton-Jacobi} equations},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1185--1195},
     publisher = {EDP-Sciences},
     volume = {35},
     number = {6},
     year = {2001},
     mrnumber = {1873522},
     zbl = {1037.65054},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/}
}
TY  - JOUR
AU  - Bacaër, Nicolas
TI  - Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2001
SP  - 1185
EP  - 1195
VL  - 35
IS  - 6
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/
LA  - en
ID  - M2AN_2001__35_6_1185_0
ER  - 
%0 Journal Article
%A Bacaër, Nicolas
%T Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2001
%P 1185-1195
%V 35
%N 6
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/
%G en
%F M2AN_2001__35_6_1185_0
Bacaër, Nicolas. Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 6, pp. 1185-1195. http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/