Voir la notice de l'article provenant de la source Numdam
Using the min-plus version of the spectral radius formula, one proves: 1) that the unique eigenvalue of a min-plus eigenvalue problem depends continuously on parameters involved in the kernel defining the problem; 2) that the numerical method introduced by Chou and Griffiths to compute this eigenvalue converges. A toolbox recently developed at I.n.r.i.a. helps to illustrate these results. Frenkel-Kontorova models serve as example. The analogy with homogenization of Hamilton-Jacobi equations is emphasized.
@article{M2AN_2001__35_6_1185_0, author = {Baca\"er, Nicolas}, title = {Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, {Frenkel-Kontorova} models and homogenization of {Hamilton-Jacobi} equations}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {1185--1195}, publisher = {EDP-Sciences}, volume = {35}, number = {6}, year = {2001}, mrnumber = {1873522}, zbl = {1037.65054}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/} }
TY - JOUR AU - Bacaër, Nicolas TI - Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2001 SP - 1185 EP - 1195 VL - 35 IS - 6 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/ LA - en ID - M2AN_2001__35_6_1185_0 ER -
%0 Journal Article %A Bacaër, Nicolas %T Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2001 %P 1185-1195 %V 35 %N 6 %I EDP-Sciences %U http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/ %G en %F M2AN_2001__35_6_1185_0
Bacaër, Nicolas. Convergence of numerical methods and parameter dependence of min-plus eigenvalue problems, Frenkel-Kontorova models and homogenization of Hamilton-Jacobi equations. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 35 (2001) no. 6, pp. 1185-1195. http://geodesic.mathdoc.fr/item/M2AN_2001__35_6_1185_0/