Voir la notice de l'article provenant de la source Numdam
@article{M2AN_1997__31_4_471_0, author = {Pavarino, Luca F.}, title = {Neumann-Neumann algorithms for spectral elements in three dimensions}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {471--493}, publisher = {Elsevier}, volume = {31}, number = {4}, year = {1997}, mrnumber = {1457457}, zbl = {0881.65121}, language = {en}, url = {http://geodesic.mathdoc.fr/item/M2AN_1997__31_4_471_0/} }
TY - JOUR AU - Pavarino, Luca F. TI - Neumann-Neumann algorithms for spectral elements in three dimensions JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 1997 SP - 471 EP - 493 VL - 31 IS - 4 PB - Elsevier UR - http://geodesic.mathdoc.fr/item/M2AN_1997__31_4_471_0/ LA - en ID - M2AN_1997__31_4_471_0 ER -
Pavarino, Luca F. Neumann-Neumann algorithms for spectral elements in three dimensions. ESAIM: Mathematical Modelling and Numerical Analysis , Tome 31 (1997) no. 4, pp. 471-493. http://geodesic.mathdoc.fr/item/M2AN_1997__31_4_471_0/
[1] Approximations Spectrales de Problèmes aux Limites Elliptiques, vol. 10 of Mathématiques & Applications, Springer Verlag France, Paris. | Zbl | MR
and , 1992,[2] Some estimates for a weighted L2 projection, Math. Comp., 56, pp. 463-476. | Zbl | MR
and , 1991,[3] Spectral Methods in Fluid Dynamics, Springer-Verlag. | Zbl | MR
, , and , 1988,[4] Quasi-optimal Schwarz methods for the conforming spectral element discretization, in 1995 Copper Mountain Conference on Multignd Methods, N. D. Melson, T. A. Manteuffel and S. F. McCormick, eds., NASA, 1995. | Zbl
, 1995,[5] Domain decomposition algorithms, Acta Numerica, Cambridge University Press, pp. 61-143. | Zbl | MR
and , 1994,[6] Schwarz analysis of itérative substructunng algorithms for elliptic problems in three dimensions, SIAM J. Numer. Anal., 31, pp. 1662-1694. | Zbl | MR
, and , 1994,[7] Towards a unified theory of domain décomposition algorithms for elliptic problems, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. Chan, R. Glowinski, J. Pénaux and O. Widlund, eds., SIAM, Philadelphia, PA, pp. 3-21. | Zbl | MR
and , 1990,[8] Schwarz methods of Neumann-Neumann type for three-dimensional elliptic finite element problems, Comm. Pure Appl. Math., 48, pp. 121-155. | Zbl | MR
and , 1995,[9] Spectral element methods for large scale parallel Navier-Stokes calculations, Comp. Meth. Appl. Mech. Engr., 116, pp. 69-76. | Zbl | MR
and , 1994,[10] Domain decomposition methods in computational mechanics, in Computational Mechanics Advances, J. T. Oden, ed., vol 1 (2), North-Holland, pp. 121-220. | Zbl | MR
, 1994,[11] Domain-decomposition methods for large linearly elliptic three dimensional problems, J. of Computational and Applied Mathematics, 35. | Zbl
, and , 1991,[12] Balancing domain decomposition, 1993, Comm. Numer. Meth. Engrg., 9, pp. 233-241. | Zbl | MR
,[13] Balancing domain decomposition : Theory and computations in two and three dimensions, tech. rep., Computational Mathematics Group, University of Colorado at Denver, UCD/CCM TR 2.
and , 1993,[14] Schwarz type domain decomposition methods for spectral element discretizations, Master's thesis, Department of Computational and Applied Mathematics, University of Wittwatersrand, Johannesburg, South Africa, December 1993.
,[15] Iterative substructuring methods for spectral elements : Problems in three dimensions based on numerical quadrature. Computers & Mathematics with Applications, 33, pp. 193-209. | Zbl | MR
and , 1997,[16] A polylogarithmic bound for an itérative substructuring method for spectral elements in three dimensions, SIAM J. Numer. Anal., 33, pp. 1303-1335. | Zbl | MR
and , 1996,[17] Preconditioned conjugate gradient solvers for spectral elements in 3D, in Solution Techniques for Large Scale CFD Problems, W. Habashi, ed., John Wiley & Sons, pp. 249-270.
and , 1995,[18] A domain decomposition method for elliptic boundary value problems : Application to unsteady incompressible fluid flow, in Fifth International Symposium on Domain Decomposition Methods for Partial Differential Equations, T. F. Chan, D. E. Keyes, G. A. Meurant, J. S. Scroggs and R. G. Voigt, eds., Philadelphia, PA, SIAM. | Zbl | MR
, 1992,[19] A domain decomposition solver for the steady Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. To appear.
, 1995,[20] Domain Decomposition : Parallel Multilevel Methods for Elliptic Partial Differential Equations, Cambridge University Press. | Zbl | MR
, and , 1996,