Mathematical foundations of general relativity. Part 1
Lekcionnye kursy NOC, Mathematical foundations of general relativity. Part 1 (2017), pp. 3-311.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{LKN_2017_a0,
     author = {M. O. Katanaev},
     title = {Mathematical foundations of general relativity. {Part} 1},
     journal = {Lekcionnye kursy NOC},
     pages = {3--311},
     publisher = {mathdoc},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/LKN_2017_a0/}
}
TY  - JOUR
AU  - M. O. Katanaev
TI  - Mathematical foundations of general relativity. Part 1
JO  - Lekcionnye kursy NOC
PY  - 2017
SP  - 3
EP  - 311
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LKN_2017_a0/
LA  - ru
ID  - LKN_2017_a0
ER  - 
%0 Journal Article
%A M. O. Katanaev
%T Mathematical foundations of general relativity. Part 1
%J Lekcionnye kursy NOC
%D 2017
%P 3-311
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LKN_2017_a0/
%G ru
%F LKN_2017_a0
M. O. Katanaev. Mathematical foundations of general relativity. Part 1. Lekcionnye kursy NOC, Mathematical foundations of general relativity. Part 1 (2017), pp. 3-311. http://geodesic.mathdoc.fr/item/LKN_2017_a0/

[1] P. K. Rashevskii, Rimanova geometriya i tenzornyi analiz, trete izd., Nauka, M., 1967

[2] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya. Metody i prilozheniya, izdanie chetvertoe, Nauka, M., 1998

[3] S. P. Novikov, I. A. Taimanov, Sovremennye geometricheskie struktury i polya, MTsNMO, M., 2005

[4] L. P. Eisenhart, Riemannian Geometry, Princeton University Press, Princeton, 1926; L. P. Eizenkhart, Rimanova geometriya, IL, M., 1948

[5] L. P. Eisenhart, Continuous Groups of Transformations, Dover Publ., New York, 1961; L. P. Eizenkhart, Nepreryvnye gruppy preobrazovanii, IL, M., 1947

[6] L. D. Landau, E. M. Lifshits, Teoriya polya, izdanie sedmoe, Nauka, M., 1988

[7] V. A. Fok, Teoriya prostranstva, vremeni i tyagoteniya, izdanie vtoroe, Fizmatgiz, M., 1961

[8] J. L. Synge, Relativity: The general theory, North–Holland Publishing Company, Amsterdam, 1960; Dzh. Sing, Obschaya teoriya otnositelnosti, IL, M., 1963

[9] R. Penrose, Structure of Space-time, W. A. Benjamin, Inc., New York – Amsterdam, 1968; R. Penrouz, Struktura prostranstva-vremeni, Mir, M., 1972

[10] S. Weinberg, Gravitation and Cosmology, Wiley, New York, 1972; S. Veinberg, Gravitatsiya i kosmologiya, Mir, M., 1975

[11] S. W. Hawking and G. F. R. Ellis, The Large Scale Structure of Space–Time, Cambridge University Press, Cambridge, 1973; S. Khoking, Dzh. Ellis, Krupnomasshtabnaya struktura prostranstva-vremeni, Mir, M., 1977

[12] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Company, San Francisco, 1973; Ch. Mizner, K. S. Torn, Dzh. Uiler, Gravitatsiya, v. 1–3, Mir, M., 1977

[13] P. A. M. Dirac, General Theory of Relativity, John Wiley Sons, Inc., New York – London, 1975; P. A. M. Dirak, Obschaya teoriya otnositelnosti, Atomizdat, M., 1978

[14] D. Kramer, H. Stephani, M. MacCallum, and E. Herlt, Exact Solutions of the Einsteins Field Equations, Deutscher Verlag der Wissenschaften, Berlin, 1980; D. Kramer, Kh. Shtefani, E. Kherlt, M. Mak-Kallum, Tochnye resheniya uravnenii Einshteina, Energoizdat, M., 1982

[15] S. Chandrasekhar, The mathematical theory of black holes, v. 1, 2, Clarendon Press, Oxford, 1983; S. Chandrasekar, Matematicheskaya teoriya chernykh dyr, v. 1, 2, Mir, M., 1986

[16] R. M. Wald, General Relativity, The University of Chicago Press, Chicago, 1984

[17] I. D. Novikov, V. P. Frolov, Fizika chernykh dyr, Nauka, M., 1986

[18] Noveishie problemy gravitatsii, ed. D. D. Ivanenko (red.), IL, M., 1961

[19] Gravitatsiya i topologiya. Aktualnye problemy, ed. D. D. Ivanenko (red.), Mir, M., 1966

[20] General relativity, eds. S. W. Hawking and W. Israel (eds), Cambridge University Press, Cambridge, 1979; Obschaya teoriya otnositelnosti, eds. S. Khoking, V. Izrael (red.), Mir, M., 1983

[21] W. Killing, “Über die Grunglagen der Geometrie”, J. Reine Angew. Math., 109 (1892), 121–186

[22] L. Bianchi, Lezioni sulla teoria dei gruppi continui finiti di transformazioni, Spoerri, Pisa, 1918

[23] M. O. Katanaev, Geometricheskie metody v matematicheskoi fizike. Prilozheniya v kvantovoi mekhanike. Chast 1, Lektsionnye kursy NOTs, no. 25, MIAN, M., 2015

[24] J. A. Wolf, Spaces of constant curvature, University of California, Berkley, California, 1972; Dzh. Volf, Prostranstva postoyannoi krivizny, Nauka, M., 1982

[25] P. Stäckel, Über die Integration der Hamilton–Jacobischen Differentialgleichung mittelst Separation der Variablen, Habilitationsschrift, Halle, 1891

[26] P. Stäckel, “Über die Bewegung eines Punktes in einer $n$-fachen Mannigfaltigkeit”, Math. Ann., 42 (1893), 537–563

[27] P. Stäckel, “Sur des problem de dynamique se reduisent a des quadratures”, Comptes rendus hebd, S. Acad. Sci. (Paris), 116 (1893), 1284–1286

[28] P. Stäckel, “Sur une classe de problemes de dynamique”, Comptes rendus hebd, S. Acad. Sci. (Paris), 116 (1893), 485–487

[29] P. Stäckel, “Sur l'integration de l'équation différentialle de Hamilton”, Comptes rendus hebd, S. Acad. Sci. (Paris), 121 (1895), 489–492

[30] R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics”, Phys. Rev. Lett., 11:5 (1963), 237–238

[31] V. V. Obukhov, Shtekkelevy prostranstva v teorii gravitatsii, Izd. Tomskogo gosudarstvennogo pedagogicheskogo universiteta, Tomsk, 2006

[32] V. V. Obukhov, K. E. Osetrin, Klassifikatsionnye problemy v teorii gravitatsii, Izd. Tomskogo gosudarstvennogo pedagogicheskogo universiteta, Tomsk, 2007

[33] Th. De Donder, La Gravifique Einsteinienne, Gauthier-Villars cie, Paris, 1921

[34] K. Lanczos, “Ein vereinfachendes {K}oordinatensystem für die {E}insteinschen {G}ravitationsgleichungen”, Phys. Zs., 23 (1922), 537–539

[35] V. A. Fok \newblock O dvizhenii konechnykh mass v obschei teorii otnositelnosti, ZhETF, 9:4 (1939), 375–410

[36] E. Fermi, “Sopra i fenomeni che avvengono in vicinanza di una linea oraria”, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fiz. Mat. Nat., 31 (1922), 21–23; 51–52; 101–103

[37] J. H. C. Whitehead, “Convex regions in the geometry of paths”, Quart. J. Math. Oxford Ser., 3 (1932), 33–42

[38] A. T. Fomenko, Simplekticheskaya geometriya, Izdatelstvo MGU, M., 1988

[39] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, American Mathematical Society, Rhode Island, 2001; S. Khelgason, Differentsialnaya geometriya, gruppy {Li} i simmetricheskie prostranstva, Faktorial Press, M., 2005

[40] M. M. Postnikov, Gruppy i algebry Li, Nauka, M., 1982

[41] L. D. Landau, E. M. Lifshits, Mekhanika, izdanie chetvertoe, Nauka, M., 1988

[42] P. J. Olver, Application of Lie Groups to Differential Equations, Springer–Verlag, Berlin – Heidelberg, 1986; P. Olver, Prilozheniya grupp Li k differentsialnym uravneniyam, Mir, M., 1989, 637 s. pp.

[43] L. E. Elsgolts, Differentsialnye uravneniya i variatsionnoe ischislenie, URSS, M., 1998

[44] E. Noether, “Invariante variationsprobleme.”, Nachr. D. König. Gesellsch. D. Wiss. Zu Göttingen, Math-phys. Klasse, 1918, pages 235–257; E. Neter, Variatsionnye printsipy v mekhanike, Fizmatgiz, M., 1959, 611

[45] B. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, New York – London, 1965; B. S. DeVitt, Dinamicheskaya teoriya grupp i polei, Nauka, M., 1987, 287 s. pp.

[46] S. Coleman, “Classical lumps and their quantum descendants”, New Phenomena in Subnuclear Physics, Lectures at the 1975 international school of subnuclear physics “Ettore Majorana” (Erice), ed. A. Zichichi, Plenum Press, New York, 1977, 297–421

[47] L. D. Faddeev, “V poiskakh mnogomernykh solitonov”, Nelokalnye, nelineinye i nerenormiruemye teorii polya, D2-9788, OIYaI, Dubna, 1977, 207–223

[48] R. Palais, “The principle of symmetric criticality”, Comm. Math. Phys., 69:1 (1979), 19–30

[49] O. A. Ladyzhenskaya, L. V. Kapitanskii, “O printsipe Koulmena nakhozhdeniya statsionarnykh tochek invariantnykh funktsionalov”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii. 15, Zap. nauch. sem. LOMI, 127, 1983, 84–102

[50] R. Schmid and L. Simoni, “On infinite-dimensional variational principles with constraints”, J. Math. Phys., 30:5 (1989), 1171–1176

[51] L. Michel and L. Radicati, “On the dynamical breaking of $su(3)$”, Proc. 5th Coral Gables Conf. Symmetry Principle at High Energy, eds. B. Krsunoglu, A. Pearlmutter, C. A. Hurst, Benjamin, New York, 1968

[52] V. I. Arnold, Matematicheskie metody klassicheskoi mekhaniki, trete izd., Nauka, M., 1989, 472 s. pp.

[53] Lee Hwa-Chung, “Invariants of hamilton systems and applications to to the theory of canonical transformations”, Proc. Roy. Soc. Edinburg. A, 62 (1947), 237–247

[54] F. R. Gantmakher, Lektsii po analiticheskoi mekhanike, trete izd., Fizmatlit, M., 2001

[55] P. A. M. Dirac, “Generalized {H}amiltonian dynamics”, Proc. Roy. Soc. London. A, 246 (1958), 326–332; Perevod v sb. “Noveishie problemy gravitatsii”, ed. D. Ivanenko, IL, M., 1961

[56] P. A. M. Dirac, “The theory of gravitation in hamiltonian form”, Proc. Roy. Soc. London. A, 246 (1246) (1958), 333–343; Perevod v sb. “Noveishie problemy gravitatsii”, ed. D. Ivanenko, IL, M., 1961

[57] P. A. M. Dirac, Lectures on Quantum Mechanics, Belfer, Yeshiva University, New York, 1964; P. A. M. Dirak, Printsipy kvantovoi mekhaniki, Nauka, M., 1979, 408–475

[58] D. M. Gitman and I. V. Tyutin, Quantization of Fields with Constraints, Springer–Verlag, Berlin – Heidelberg, 1990

[59] M. Henneaux and C. Teitelboim, Quantization of Gauge Systems, Princeton University Press, Princeton, 1992

[60] V. P. Pavlov, Negolonomnaya mekhanika {D}iraka i differentsialnaya geometriya, Lektsionnye kursy NOTs, MIAN, M., 2014

[61] L. D. Faddeev, “Integral Feinmana dlya singulyarnykh lagranzhianov”, TMF, 1:1 (1969), 3–18

[62] E. S. Fradkin and G. A. Vilkovisky, Quantization of relativistic systems with constraints – equivalence of canonical and covariant formalism in quantum theory of gravitational field, CERN Preprint TH 2332, 1977

[63] A. Einstein, “Die {F}eldgleichungen der {G}ravitation”, Sitzungsber. preuss. Akad. Wiss., 48:2 (1915), 844–847; Albert Einshtein, Sobranie nauchnykh trudov, v. 1, Nauka, M., 1965, 448–451

[64] D. Hilbert, “Die grundlagen der physik”, Nachrichten K. Gesellschaft Wiss. Göttingen, Math.-phys. Klasse, Heft 3 (1915), 395; Albert Einshtein i teoriya gravitatsii, Mir, M., 1979, 133–145

[65] A. Einstein, “Die-{G}rundlage der allgemeinen {R}elativitätstheorie”, Ann. d. Phys., 49 (1916), 769–822; Albert Einshtein i teoriya gravitatsii, Mir, M., 1979, 146–196

[66] von M. Fierz, “Über die physikalische deutung der erweiterten gravitationstheorie P. Jordans”, Helv. Phys. Acta, 29 (1956), 128–134

[67] P. Jordan, “Zum gegenwärtigen stand der diracschen kosmologischen hypothesen”, Z. Phys., 157 (1959), 112–121

[68] C. Brans and R. H. Dicke, “Mach's prinsiple and a relativistic theory of gravitation”, Phys. Rev., 124:3 (1961), 925–935

[69] P. A. M. Dirac, “A new basis for cosmology”, Proc. Roy. Soc. London. A, 165:921 (1938), 199–208

[70] A. Peres, “Polynomial expansion of gravitational lagrangian”, Nuovo Cimento, 28:4 (1963), 865–867

[71] M. O. Katanaev, “Polynomial form of the {H}ilbert–{E}instein action”, Gen. Rel. Grav., 38 (2006), 1233–1240; gr-qc/0507026

[72] R. Penrose, “A remarkable property of plane waves in general relativity”, Rev. Mod. Phys., 37:1 (1965), 215–220

[73] N. A. Chernikov and E. A. Tagirov, “Quantum theory of scalar field in de {S}itter space-time”, Ann. Inst. Henri Poincaré. A, 9:2 (1968), 109–141

[74] N. Kh. Ibragimov, “K gruppovoi klassifikatsii differentsialnykh uravnenii vtorogo poryadka”, DAN, 183:2 (1968), 274–277

[75] C. G. Callan, S. Coleman, and R. Jackiw, “A new improved energy–momentum tensor”, Ann. Phys., 59:42–73 (1970)

[76] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, izdanie pyatoe, Nauka, M., 1988

[77] M. Fierz and W. Pauli, Proc. Roy. Soc. London. A, 173, 1939

[78] W. G. Unruh, “Experimental black-hole evaporation?”, Phys. Rev. Lett., 46 (1981), 1351–1353

[79] W. G. Unruh, “Sonic analogue of black holes and the effect of high frequencies on black holes evaporation”, Phys. Rev. D, 51:6 (1995), 2827–2838

[80] M. Visser, “Acoustic black holes: Horizons, ergospheres, and {H}awking radiation”, Class. Quantum Grav., 15 (1998), 1767–1791

[81] L. D. Landau, E. M. Lifshits, Gidrodinamika, trete izdanie, Nauka, M., 1986

[82] A. Z. Petrov, Novye metody v obschei teorii otnositelnosti, Nauka, M., 1966

[83] R. Arnowitt, S. Deser, and S. W. Misner, “The dynamics of general general relativity”, Gravitation: an introduction to current research, ed. L. Witten, John Wiley Sons, Inc., New York – London, 1962; gr-qc/0405109

[84] B. S. DeWitt, “Quantum theory of gravity. I. The canonical theory”, Phys. Rev., 160:5 (1967), 1113–1148

[85] D. M. Gitman, I. V. Tyutin, Kanonicheskoe kvantovanie polei so svyazyami, Nauka, M., 1986

[86] H. Weyl, Raum – Zeit – Materie, Springer, Berlin, 1918; G. Veil, Prostranstvo, vremya, materiya, Yanus, M., 1996

[87] W. Pauli, Theory of Relativity, Pergamon Press, New York, 1958; V. Pauli, Teoriya otnositelnosti, Nauka, M., 1991

[88] E. Schrödinger, Space-time Structure, Cambridge U.P., Cambridge, 1950; E. Shredinger, Prostranstvenno-vremennáya struktura Vselennoi, Nauka, M., 1986

[89] W. Gordon, “Der {C}omptoneffekt nach der {S}chrödingerschen {T}heorie”, Zs. f. Phys., 40:1, 2 (1926), 117–133

[90] V. A. Fock, “Zur {S}chrödingerschen {W}ellenmechanik”, Zs. f. Phys., 38:3 (1926), 242–250

[91] V. A. Fock, “Über die invariante {F}orm der {W}ellen- und der {B}ewegungs- gleichungen für einen geladenen {M}assenpunkt”, Zs. f. Phys., 39:2, 3 (1926), 226–232

[92] O. Klein, “Elektrodynamik und {W}ellenmechanik vom {S}tandpunkt des {K}orrespondenzprinzips”, Zs. f. Phys., 41:10 (1927), 407–442

[93] J. Goldstone, “Field theories with “superconductor” solutions”, Nuovo Cim., 19:1 (1961), 154–164

[94] E. P. Wigner, Group Theory and its application to the quantum mechanics of atomic spectra, Academic Press, New York – London, 1959; E. Veil, Teoriya grupp i ee prilozheniya k kvantovomekhanicheskoi teorii atomnykh spektrov, IL, M., 1961

[95] J. van Bladel, “Lorenz or {L}orentz?”, IEEE Antennas and Propagation Magazin, 33:2 (1991), 69

[96] F. Englert and R Brout, “Broken symmetry and the mass of gauge vector mesons”, Phys. Rev. Lett., 13:9 (1964), 321–323

[97] P. W. Higgs \newblock Broken symmetries, massless particles and gauge fields, Phys. Lett., 12:2 (1964), 132–133

[98] A. Proca, “Sur la théorie ondulatoire des électrons positifs et négatifs”, J. Physique, 8:347–353 (1936)

[99] A. Proca, “Sur la théorie du positon”, C. R. Acad. Sci. Paris, 202 (1936), 1366

[100] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, 5 izd., Nauka, M., 1977

[101] I. M. Gelfand, R. A. Minlos, Z. Ya. Shapiro, Predstavleniya gruppy vraschenii i gruppy Lorentsa, ikh primeneniya, Fiz.-mat. lit., M., 1958

[102] N. N. Bogolyubov, A. A. Logunov, A. I. Oksak, I. T. Todorov, Obschie printsipy kvantovoi teorii polya, Nauka, M., 1987

[103] W. Pauli, “Contributions mathematiques a la theorie des matrices de Dirac”, Ann. Inst. H. Poincare, 6 (1936), 109

[104] R. H. Good, Jr., Rev. Mod. Phys., 27, no. 2, 1955

[105] M. Fierz, “Zur fermischen theorie des $\beta$-zerfalls”, Z. Phys., 104 (1937), 553–556

[106] R. F. Streater and A. S. Wightman, ${PCT}$, Spin and Statistics and All That, W. A. Benjamin, Inc., New York – Amsterdam, 1964; R. Striter, A. S. Vaitman, PCT, spin, statistika i vse takoe, Nauka, M., 1966

[107] P. A. M. Dirac, “The quantum theory of the electron”, Proc. Roy. Soc. London. A, 117 (1928), 610–624; P. A. M. Dirak, K sozdaniyu kvantovoi teorii polya, ed. B. V. Medvedev, Nauka, M., 1990, 113–128

[108] P. A. M. Dirac, “The quantum theory of the electron. Part II”, Proc. Roy. Soc. London. A, 118 (1928), 351–361; P. A. M. Dirak, K sozdaniyu kvantovoi teorii polya, ed. B. V. Medvedev, Nauka, M., 1990, 129–141

[109] E. Majorana, “Teoria simmetrica dell'elettrone e del positrone”, Nuovo Cim., 14 (1937), 171–195

[110] V. A. Fock, “Geometrizierung der {D}iracschen {T}heorie des {E}lectrons”, Zs. f. Phys., 57:3, 4 (1929), 261–277; Albert Einshtein i teoriya gravitatsii, Mir, M., 1979, 415–432

[111] H. Weyl, “Gravitation and the electron”, Proc. Nat. Acad. Sci. USA, 15 (1929), 323–334

[112] V. S. Vladimirov, V. V. Zharinov, Uravneniya matematicheskoi fiziki, Fiz-mat literatura, Laboratoriya bazovykh znanii, M., 2000

[113] J. A. Thorpe, Elementary Topics in Differential Geometry, Springer–Verlag, Berlin – Heidelberg, 1979; Dzh. Torp, Nachalnye glavy differentsialnoi geomerii, Mir, M., 1982

[114] T. K. Milnor, “Efimov's theorem about complete immersed surfaces of negative curvature”, Advances in Math., 8 (1972), 474–543

[115] N. H. Kuiper, “On {$\CC^1$} isometric embeddings. II”, Nederl. Akad. Wetensch. Proc. Ser. A, 58 (1955), 683–689

[116] M. O. Katanaev, J. Math. Phys., 34, no. 2, 1993

[117] L. Liouville, “Sur l'équation aux différences partielles $\frac{\partial^2\ln\lambda}{\partial u\partial v}\pm\lambda a^2=0$”, J. Math. Pures Appl., 18:71–72 (1853)

[118] M. D. Kruskal, “Maximal extension of {S}chwarzschild metric”, Phys. Rev., 119:5 (1960), 1743–1745

[119] G. Szekeres, Publ. Mat. Debrecen, 7, no. 1–4, 1960

[120] K. Schwarzschild, “Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie”, Sitzungsber. Akad. Wiss. Berlin, 1916, 189–196; Albert Einshtein i teoriya gravitatsii, Mir, M., 1979, 199–207

[121] “On the field of a single centre in Einstein's theory of gravitation”, Proc. Acad. Sci. Amsterdam, 17 (1915), 998–1011

[122] “On the field of two Spherical Fixed Centres in Einstein's Theory of Gravitation”, Proc. Acad. Sci. Amsterdam, 18 (1916), 760–769

[123] J. Droste, “Het veld van een enkel centrum in einstein's theorie der zwaartekracht, en de beweging van een stoffelijk punt in dat veld”, Proc. Kon. Ned. Akad. Wet. Amsterdam, 25 (1916–1917), 163–180; English translation: “The Field of a Single Centre in Einstein's Theory of Gravitation, and the Motion of a Particle in That Field”, Proc. Acad. Sci. Amsterdam, 19 (1917), 197–215; Reprinted, with historical comments in Gen. Rel. Grav., 34 (2002), 1545

[124] M. O. Katanaev and I. V. Volovich, “String model with dynamical geometry and torsion”, Phys. Lett. B, 175:4 (1986), 413–416

[125] T. Klösch and T. Strobl, “Classical and quantum gravity in $1+1$ dimensions: {II}. {T}he universal coverings”, Class. Quantum Grav., 13 (1996), 2395–2421

[126] M. O. Katanaev, W. Kummer, and H. Liebl, “Geometric interpretation and classification of global solutions in generalized dilaton gravity”, Phys. Rev. D, 53:10 (1996), 5609–5618

[127] M. O. Katanaev, W. Kummer, and H. Liebl, “On the completeness of the black hole singularity in 2d dilaton theories”, Nucl. Phys. B, 486 (1997), 353–370

[128] M. O. Katanaev, “Global solutions in gravity: Euclidean signature.”, Fundumental Interactions. A Memorial Volume for Wolfgang Kummer, eds. D. Vassilevich D. Grumiller, A. Rebhan, World Scientific, Singapore, 2010, 249–266; gr-qc/0808.1559

[129] B. Carter, “Black hole equilibrium states”, Black Holes, eds. C. DeWitt and B. C. DeWitt, Gordon Breach, New York, 1973, 58–214

[130] H. Reissner, “Über die Eigengravitation des elektrischen Feldes nach der Einsteinschen Theorie”, Ann. Physik (Leipzig), 50 (1916), 106–120

[131] G Nordström, “On the energy of the gravitational field in Einstein's theory”, Proc. Kon. Ned. Akad. Wet., 20 (1918), 1238–1245

[132] A. S. Eddington, “A comparison of {W}hitehead's and {E}instein's formulae”, Nature, 113 (1924), 192

[133] D. Finkelstein, “Past-future asymmetry of the gravitational field of a point particle”, Phys. Rev., 110:4 (1958), 965–967

[134] I. V. Volovich, M. O. Katanaev, “Kvantovye struny s dinamicheskoi geometriei”, Pisma v ZhETF, 43:5 (1986), 212–213

[135] M. O. Katanaev and I. V. Volovich, Ann. Phys., 197, no. 1, 1990

[136] M. O. Katanaev, “Novaya integriruemaya model – dvumernaya gravitatsiya s dinamicheskim krucheniem”, DAN SSSR, 309:3 (1989), 591–593

[137] M. O. Katanaev, “Complete integrability of two-dimensional gravity with dynamical torsion”, J. Math. Phys., 31:4 (1990), 882–891

[138] M. O. Katanaev, “Conformal invariance, extremals, and geodesics in two-dimensional gravity with torsion”, J. Math. Phys., 32:9 (1991), 2483–2496

[139] M. O. Katanaev, T. Klösch, and W. Kummer, “Global properties of warped solutions in general relativity”, Ann. Phys., 276 (1999), 191–222

[140] M. O. Katanaev, “Canonical quantization of the string with dynamical geometry and anomaly free nontrivial string in two dimensions”, Nucl. Phys. B, 416 (1994), 563–605

[141] W. Kummer, H. Liebl, and D. V. Vassilevich, “Exact path integral quantization of generic {2D} dilaton gravity”, Nucl. Phys. B, 493 (1997), 491–502

[142] W. Kummer and G. Tieber, “Universal conservation law and modified {N}oether symmetry in $2d$ models of gravity with matter”, Phys. Rev. D, 59 (1998), 044001

[143] M. O. Katanaev, “New integrable model – two-dimensional gravity with dynamical torsion”, Sov. Phys. Dokl., 34:3 (1989), 982–984

[144] W. Kummer and D. J. Schwarz, “General analytic solution of {$R^2$}-gravity with dynamical torsion in two dimensions”, Phys. Rev. D, 45:8 (1992), 3628–3635

[145] S. N. Solodukhin, “Black-hole solution in $2d$ gravity with torsion”, JETP Lett., 57:6 (1993), 329–334

[146] E. W. Mielke, F. Gronwald, Yu. N. Obukhov, R. Tresguerres, and F. W. Hehl, “Towards complete integrability of two dimensional {P}oincaré gauge gravity”, Phys. Rev. D, 48:8 (1993), 3648–3662

[147] P. Schaller and T. Strobl, “Canonical quantization of non-{E}insteinian gravity and the problem of time”, Class. Quantum Grav., 11 (1994), 331–346

[148] W. Kummer and P. Widerin, “Conserved quasilocal quantities and general covariant theories in two dimensions”, Phys. Rev. D, 52:12 (1995), 6965–6975

[149] B. M. Barbashov, V. V. Nesterenko, and A. M. Chervjakov, “Solitons is some geometrical field theories”, Theor. Math. Phys., 40:1 (1979), 15–27

[150] R. Jackiw, “Liouville field theory: a two-dimensional model for gravity”, Quantum theory of gravity, ed. S. Christensen, Hilger, Bristol, 1984, 403–420

[151] C. Teitelboim, “Gravitation and {H}amiltonian structure in two spacetime dimensions”, Phys. Lett. B, 126:1, 2 (1983), 41–45

[152] N. Ikeda and K.-J. Izawa, “General form of dilaton gravity and nonlinear gauge theory”, Prog. Theor. Phys., 89:5 (1993), 237–246

[153] P. Schaller and T. Strobl, “Poisson structure induced (topological) field theories”, Mod. Phys. Lett. A, 9:33 (1994), 3129–3136

[154] G. D. Birkhoff, Relativity and modern physics, Cambridge, Harvard University Press, Cambridge, 1923

[155] J. T. Jebsen, “Uber die allgemeinen kugelsymmetrischen losungen der einsteinschen gravitationsgleichungen im vakuum”, Ark. Mat. Ast. Fys., 15:18 (1921), 1–9

[156] F. Kottler, “Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie”, Ann. Physik (Leipzig), ser. 4, 56:14 (1918), 401–462

[157] A. Einstein and N Rosen, “The particle problem in the general theory of relativity”, Phys. Rev., 43 (1935), 73–77

[158] L. Flamm, “Beiträge zur {E}insteinschen {G}ravitationstheorie”, Physik.Ż., 17 (1916), 448

[159] P. Peinlevé, “La mécanique classique el la theorie de la relativité”, C. R. Acad. Sci. (Paris), 173 (1921), 677–680

[160] A. Gullstrand, “Allegemeine lösung des statischen einkörper-problems in der {E}insteinshen gravitations theorie”, Arkiv. Mat. Astron. Fys., 16:8 (1922), 1–15

[161] E. Kasner, “The impossiility of {E}instein fields immersed in flat space of five dimensions”, Am. J. Math., 43:2 (1921), 126–129

[162] S. A. Paston, A. A. Sheikin, “Vlozheniya dlya reshenii uravnenii {E}inshteina”, TMF, 175 (2013), 429–441

[163] C. Fronsdal, “Completion and embedding of the Schwarzschild solution”, Phys. Rev., 116:3 (1959), 778–781

[164] E. Kasner, “Finite representation of the solar gravitational field if flat space of six dimensions”, Am. J. Math., 43:2 (1921), 130–133

[165] T. Fujitani, M. Ikeda, and M. Matsumoto, “On the embedding of the {S}chwarzschild”, J. Math. Kyoto Univ., 1:1 (1961), 43–61

[166] A. K. Raychaudhuri, “Relativistic cosmology. {I}”, Phys. Rev., 98:4 (1955), 1123–1126; “Reprinted, with historical comments:”, Gen. Rel. Grav., 32 (2000), 743

[167] A. K. Raychaudhuri, “Singular state in relativistic cosmology”, Phys. Rev., 106 (1957), 172

[168] J. Ehlers, “Beiträge zur relativistischen {M}echanik kontinuierlicher {M}edien [contributions to the relativistic mechanics of continuous media]”, Abhandlungen der {M}athematisch-{N}aturwissenschaftlichen {K}lasse der {A}kademie der {W}issenschaften und {L}iteratur {M}ainz, 11 (1961); English translation: Gen. Rel. Grav., 25:12 (1993), 1225–1266

[169] A. A. Penzias and R. W. Wilson, “A measurement of excess antenna temperature at 4080 mc/s”, Astrophys. J., 142:3 (1965), 419–421

[170] A. Friedmann, “Über die {K}rümmung des {R}aumes”, Zs. Phys., 10 (1922), 377–386

[171] A. Friedmann, “Über die {M}öglichkeit einer {W}elt mit konstanter negativer {K}rümmung des {R}aumes”, Zs. Phys., 21 (1924), 326–332

[172] S. Perlmutter and et al, “Measurements of $\omega$ and $\lambda$ from 42 high-redshift supernovae”, Astrophys. J., 517:2 (1999), 565–586

[173] A. G. Riess and et al, “Observational evidence from supernovae for an accelerating universe and a cosmological constant”, Astron. J., 116:3 (1998), 1009–1038

[174] J. H. Jeans, “The motions of stars in a Kapteyn-universe”, MNRAS, 82 (1922), 122–132

[175] J. C. Kapteyn, “First attempt at a theory of the arrangement and motion of the sidereal system”, Astrophys. J., 55 (1922), 302–328

[176] A. Einstein, “Kosmologische {B}etrachtungen zur allgemeinen {R}elativitätstheorie”, Sitzungsber. preuss. Akad. Wiss., 1 (1917), 142–152; Albert Einshtein. Sobranie nauchnykh trudov, v. 1, Nauka, M., 1965, 601–612

[177] P. Hájiček, An Introduction to the Relativistic Theory of Gravitation, Springer, Heidelberg, 2008

[178] W. de Sitter, “On the relativity of inertia: Remark concerning Einstein's latest hypothesis”, Proc. Sect. Sci. K. ned. Akad. Wet., 19 (1916–1917), 1217–1225

[179] W. de Sitter, “On the curvature of space”, Proc. Sect. Sci. K. ned. Akad. Wet., 20 (1917), 229–243

[180] H. P. Robertson, “Relativistic cosmology”, Rev. Mod. Phys., 5 (1933), 62–90

[181] L. Bianchi, “Sugli spazii a tre dimensioni che ammettono un gruppo continuo di movimenti”, Soc. Ital. Sci. Mem. di Mat., 11 (1897), 267

[182] E. Kasner, “Geometrical theorems on {E}instein's cosmological equations”, Am. J. Math., 43:4 (1921), 217–221