Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LKN_2011_a0, author = {N. A. Slavnov}, title = {Introduction to the theory of quantum integrable systems. {Quantum} nonlinear {Schr\"odinger} equation}, journal = {Lekcionnye kursy NOC}, pages = {3--118}, publisher = {mathdoc}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/LKN_2011_a0/} }
N. A. Slavnov. Introduction to the theory of quantum integrable systems. Quantum nonlinear Schr\"odinger equation. Lekcionnye kursy NOC, Introduction to the theory of quantum integrable systems. Quantum nonlinear Schrödinger equation (2011), pp. 3-118. http://geodesic.mathdoc.fr/item/LKN_2011_a0/
[1] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | MR | Zbl
[2] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989 | MR | Zbl
[3] M. Goden, Volnovaya funktsiya Bete, Mir, M., 1987 | MR | Zbl
[4] V. E. Korepin, “Calculation of norms of Bethe wave functions”, Comm. Math. Phys., 86:3 (1982), 391–418 | DOI | MR | Zbl
[5] V. E. Korepin, N. M. Bogolyubov, A.Ġ. Izergin, Kvantovyi metod obratnoi zadachi i korrelyatsionnye funktsii, Nauka, M., 1991
[6] N. A. Slavnov, “Ob odnom tozhdestve dlya dualnykh polei”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 14, Zap. nauchn. sem. POMI, 245, POMI, SPb., 1997, 270–281 | MR | Zbl
[7] F. A. Berezin, G. P. Pokhil, V. M. Finkelberg, “Uravnenie Shrëdingera dlya sistemy odnomernykh chastits s tochechnym vzaimodeistviem”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1964, no. 1, 21–28 | MR
[8] V. E. Korepin, N. M. Bogolyubov, A. G. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge Monogr. Math. Phys., Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[9] V. I. Smirnov, Kurs vysshei matematiki, T. 4, Ucheb. posobie, Nauka, M., 1958 | MR
[10] E. H. Lieb, “Exact analysis of an interaction Bose gas. I. The general solution and the ground state”, Phys. Rev. (2), 130 (1963), 1605–1616 | DOI | MR | Zbl
[11] E. H. Lieb, “Exact analysis of an interacting Bose gas. II. The excitation spectrum”, Phys. Rev. (2), 130 (1963), 1616–1624 | DOI | MR | Zbl
[12] C. N. Yang, “Some exact results for the many-body problem in one dimension with repulsive delta-function interaction”, Phys. Rev. Lett., 19 (1967), 1312–1315 | DOI | MR | Zbl
[13] C. N. Yang, C. P. Yang, “Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction”, J. Math. Phys., 10 (1969), 1115–1122 | DOI | MR | Zbl
[14] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza, Fizmatgiz, M., 1963 | MR | Zbl
[15] V. E. Korepin, N. A. Slavnov, “The time dependent correlation function of an impenetrable Bose gas as a Fredholm minor. I”, Comm. Math. Phys., 129:1 (1990), 103–113 | DOI | MR | Zbl
[16] A. R. Its, A.Ġ. Izergin, V. E. Korepin, N. A. Slavnov, “Differential equations for quantum correlation functions”, Internat. J. Modern Phys. B, 4:5 (1990), 1003–1037 | DOI | MR | Zbl
[17] N. A. Slavnov, “Fredgolmovy determinanty i $\tau$-funktsii”, TMF, 109:3 (1996), 357–371 | MR | Zbl
[18] P. Deift, X. Zhou, “A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation”, Ann. of Math. (2), 137:2 (1993), 295–368 | DOI | MR | Zbl
[19] V. V. Cheianov, M. B. Zvonarev, “Zero temperature correlation functions for the impenetrable fermion gas”, J. Phys. A: Math. Gen., 37:6 (2004), 2261–2297 | DOI | MR | Zbl