Teichmüller spaces
Lekcionnye kursy NOC, Teichmüller spaces, Tome 15 (2010) no. 15, pp. 3-150 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{LKN_2010_15_15_a0,
     author = {E. M. Chirka},
     title = {Teichm\"uller spaces},
     journal = {Lekcionnye kursy NOC},
     pages = {3--150},
     year = {2010},
     volume = {15},
     number = {15},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/LKN_2010_15_15_a0/}
}
TY  - JOUR
AU  - E. M. Chirka
TI  - Teichmüller spaces
JO  - Lekcionnye kursy NOC
PY  - 2010
SP  - 3
EP  - 150
VL  - 15
IS  - 15
UR  - http://geodesic.mathdoc.fr/item/LKN_2010_15_15_a0/
LA  - ru
ID  - LKN_2010_15_15_a0
ER  - 
%0 Journal Article
%A E. M. Chirka
%T Teichmüller spaces
%J Lekcionnye kursy NOC
%D 2010
%P 3-150
%V 15
%N 15
%U http://geodesic.mathdoc.fr/item/LKN_2010_15_15_a0/
%G ru
%F LKN_2010_15_15_a0
E. M. Chirka. Teichmüller spaces. Lekcionnye kursy NOC, Teichmüller spaces, Tome 15 (2010) no. 15, pp. 3-150. http://geodesic.mathdoc.fr/item/LKN_2010_15_15_a0/

[1] U. Abikof, Veschestvenno analiticheskaya teoriya prostranstv Teikhmyullera, Matematika. Novoe v zarubezhnoi nauke, 38, Mir, M., 1985 | MR | Zbl

[2] L. Alfors, L. Bers, Prostranstva rimanovykh poverkhnostei i kvazikonformnye otobrazheniya, IL, M., 1961 | MR

[3] L. Ahlfors et al. (eds), Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl

[4] L. Alfors, Lektsii po kvazikonformnym otobrazheniyam, Mir, M., 1969 | MR | Zbl

[5] S. L. Krushkal, Kvazikonformnye otobrazheniya i rimanovy poverkhnosti, Nauka, Novosibirsk, 1975 | MR | Zbl

[6] O. Lehto, Univalent Functions and Teichmüller Spaces, Grad. Texts in Math., 109, Springer-Verlag, New York, 1987 | MR | Zbl

[7] S. Nag, The Complex Analytic Theory of Teichmüller Spaces, Canad. Math. Soc. Ser. Monogr. Adv. Texts, John Wiley Sons, New York, 1988 | MR | Zbl

[1] L. Ahlfors, L. Bers, “Riemann's mapping theorem for variable metrics”, Ann. of Math. (2), 72 (1960), 385–404 | DOI | MR | Zbl

[2] A. Andreotti, “On a theorem of Torelli”, Amer. J. Math., 80 (1958), 801–828 | DOI | MR | Zbl

[3] L. Bers, H. Royden, “Holomorphic families of injections”, Acta Math., 157:3-4 (1986), 259–286 | DOI | MR | Zbl

[4] A. B. Bogatyrev, Ekstremalnye mnogochleny i rimanovy poverkhnosti, MTsNMO, M., 2005 | MR

[5] B. V. Boyarskii, “Gomeomorfnye resheniya sistem Beltrami”, Dokl. AN SSSR, 102 (1955), 661–664 | MR

[6] B. V. Boyarskii, “Obobschennye resheniya sistemy differentsialnykh uravnenii pervogo poryadka ellipticheskogo tipa s razryvnymi koeffitsientami”, Matem. sb., 43:4 (1957), 451–503 | MR | Zbl

[7] I. N. Vekua, Obobschennye analiticheskie funktsii, Nauka, M., 1988 | MR | Zbl

[8] R. Ganning, Kh. Rossi, Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR | Zbl

[9] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[10] B. A. Dubrovin, S. P. Novikov, V. T. Fomenko, Sovremennaya geometriya. Metody teorii gomologii, Nauka, M., 1984 | MR | Zbl

[11] C. J. Earle, “On holomorphic families of pointed Riemann surfaces”, Bull. Amer. Math. Soc., 79 (1973), 163–166 | DOI | MR | Zbl

[12] C. J. Earle, “The Teichmüller distance is differentiable”, Duke Math. J., 44:2 (1977), 389–397 | DOI | MR | Zbl

[13] C. J. Earle, I. Kra, S. L. Krushkal', “Holomorphic motions and Teichmüller spaces”, Trans. Amer. Math. Soc., 343:2 (1994), 927–948 | DOI | MR | Zbl

[14] C. Ehresmann, “Les connexions infinitesimales dans un espace fibré differentiable”, Colloque de topologie (espaces fibrés) (Bruxelles, 1950), Masson et Cie., Paris, 1951, 29–55 | MR | Zbl

[15] D. B. A. Epstein, “Curves on 2-manifolds and isotopies”, Acta Math., 115 (1966), 83–107 | DOI | MR | Zbl

[16] H. Farkas, I. Kra, Riemann Surfaces, Grad. Texts in Math., 71, Springer-Verlag, Berlin, 1980 | MR | Zbl

[17] O. Forster, Rimanovy poverkhnosti, Mir, M., 1980 | MR | Zbl

[18] F. P. Gardiner, Teichmüller theory and quadratic differentials, Pure Appl. Math. (N. Y.), John Wiley Sons, New York, 1987 | MR | Zbl

[19] A. M. Garsia, “An imbedding of closed Riemann surfaces in Euclidean space”, Comment. Math. Helv., 35 (1961), 93–110 | DOI | MR | Zbl

[20] R. S. Hamilton, “Extremal quasiconformal mappings with prescribed boundary values”, Trans. Amer. Math. Soc., 138 (1969), 399–406 | MR | Zbl

[21] Dzh. Kharris, Ya. Morrison, Moduli krivykh. Vvodnyi kurs, Mir, M., 2004 | MR | Zbl

[22] M. Khirsh, Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[23] Y. Imayoshi, M. Taniguchi, An Introduction to Teichmüller Spaces, Springer-Verlag, Tokyo, 1992 | MR | Zbl

[24] F. F. Knudsen, D. Mumford, “The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div””, Math. Scand., 39:1 (1976), 19–55 ; F. F. Knudsen, “The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$.”, Math. Scand., 52:2 (1983), 161–199 ; F. F. Knudsen, “The projectivity of the moduli space of stable curves. III. The line bundles on $M_{g,n}$, and a proof of the projectivity of $\overline M_{g,n}$ in characteristic 0”, Math. Scand., 52:2 (1983), 200–212 | MR | Zbl | MR | Zbl | MR | Zbl

[25] S. L. Krushkal, “K teoreme Teikhmyullera ob ekstremalnykh kvazikonformnykh otobrazheniyakh”, Sib. matem. zhurn., 8 (1967), 313–332 | MR | Zbl

[26] S. L. Krushkal, “Kompleksnaya geometriya universalnogo prostranstva Teikhmyullera”, Sib. matem. zhurn., 45:4 (2004), 780–808 | MR | Zbl

[27] S. L. Krushkal, “The Green function of Teichmüller spaces with applications”, Bull. Amer. Math. Soc. (N.S.), 27:1 (1992), 143–147 | DOI | MR | Zbl

[28] S. L. Krushkal, “Polynomial convexity of Teichmüller spaces”, J. London Math. Soc. (2), 52:1 (1995), 147–156 | MR | Zbl

[29] O. Lehto, K. I. Virtanen, Quasiconformal Mappings in the Plane, Grundlehren Math. Wiss., 126, Springer-Verlag, New York, 1973 | MR | Zbl

[30] M. Mazzokko, L. O. Chekhov, “Orbifoldnye rimanovy poverkhnosti: prostranstva Teikhmyullera i algebry geodezicheskikh funktsii”, UMN, 64:6 (2009), 117–168 | MR | Zbl

[31] S. M. Natanzon, Moduli rimanovykh poverkhnostei, veschestvennykh algebraicheskikh krivykh i ikh superanalogi, MTsNMO, M., 2003 | MR

[32] R. Nevanlinna, Uniformizatsiya, IL, M., 1955 | MR | Zbl

[33] H. L. Royden, “Automorphisms and isometries of Teichmüller space”, Advances in the Theory of Riemann Surfaces, Ann. of Math. Stud., 66, Princeton Univ. Press, Princeton, NJ, 1971, 369–383 | MR | Zbl

[34] E. M. Chirka, Rimanovy poverkhnosti, Lekts. kursy NOTs, 1, MIAN, M., 2006 | DOI

[35] Dzh. Springer, Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960 | MR | Zbl

[36] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[37] B. V. Shabat, Vvedenie v kompleksnyi analiz, v. 1, 2, Nauka, M., 1985 | MR | Zbl | Zbl

[38] V. G. Sheretov, Klassicheskaya i kvazikonformnaya teoriya rimanovykh poverkhnostei, RKhD, Izhevsk, 2007