Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LKN_2009_a0, author = {D. M. Chibisov}, title = {Lectures on the asymptotic theory of rank tests}, journal = {Lekcionnye kursy NOC}, pages = {3--174}, publisher = {mathdoc}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/LKN_2009_a0/} }
D. M. Chibisov. Lectures on the asymptotic theory of rank tests. Lekcionnye kursy NOC, Lectures on the asymptotic theory of rank tests (2009), pp. 3-174. http://geodesic.mathdoc.fr/item/LKN_2009_a0/
[1] Andronov A. M., Kopytov E. A., Gringlaz L. Ya., Teoriya veroyatnostei i matematicheskaya statistika, Piter, SPb, 2004
[2] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR | Zbl
[3] Gaek Ya., Shidak Z., Teoriya rangovykh kriteriev, Nauka, M., 1971 | MR | Zbl
[4] Gnedenko B. V., Kurs teorii veroyatnostei, 9-e izd., URSS, M., 2007 | MR | Zbl
[5] Gnedenko B. V., Kolmogorov A. N., Predelnye raspredeleniya dlya summ nezavisimykh sluchainykh velichin, Gostekhizdat, M.–L., 1949 | MR
[6] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, 6-e izd., Nauka, M., 1989 | MR | Zbl
[7] Leman E., Proverka statisticheskikh gipotez, 2-e izd., Nauka, M., 1979 | MR | Zbl
[8] Loev M., Teoriya veroyatnostei, IL, M., 1962 | MR | Zbl
[9] Nikitin Ya. Yu., Asimptoticheskaya effektivnost neparametricheskikh kriteriev, Teoriya veroyatnostei. Matematicheskaya statistika, Nauka, M., 1995 | MR | Zbl
[10] Prokhorov Yu. V., “Skhodimost sluchainykh protsessov i predelnye teoremy teorii veroyatnostei”, TVP, 1 (1956), 177–238 | MR | Zbl
[11] Rusas Dzh., Kontigualnost veroyatnostnykh mer. Primeneniya k statistike, Mir, M., 1975 | MR | Zbl
[12] Khettmansperger T., Statisticheskie vyvody, osnovannye na rangakh, Matematiko-statisticheskie metody za rubezhom, Finansy i statistika, M., 1987 | MR | Zbl
[13] Khollender M., Vulf D., Neparametricheskie metody statistiki, Finansy i statistika, M., 1983 | MR | Zbl
[14] Chibisov D. M., “Asimptoticheskie razlozheniya v zadachakh proverki gipotez. II”, Izv. AN UzSSR. Ser. fiz.-mat. nauk, 1982, no. 6, 23–30 | MR | Zbl
[15] Shiryaev A. N., Veroyatnost, v. 1, Elementarnaya teoriya veroyatnostei. Matematicheskie osnovaniya. Predelnye teoremy, MTsNMO, M., 2007
[16] Shiryaev A. N., Veroyatnost, v. 2, Summy i posledovatelnosti sluchainykh velichin – statsionarnye, martingaly, markovskie tsepi, MTsNMO, M., 2007
[17] Albers W., Bickel P. J., van Zwet W. R., “Asymptotic expansions for the power of distribution free tests in the one-sample problem”, Ann. Statist., 4:1 (1976), 108–156 | DOI | MR | Zbl
[18] Bening V. E., “A formula for deficiency: one sample $L$- and $R$-tests. I”, Math. Methods Statist., 4:2 (1995), 167–188 | MR | Zbl
[19] Bickel P. J., van Zwet W. R., “Asymptotic expansions for the power of distribution free tests in the two-sample problem”, Ann. Statist., 6:5 (1978), 937–1004 | DOI | MR | Zbl
[20] Chernoff H., Savage I. R., “Asymptotic normality and efficiency of certain nonparametric test statistics”, Ann. Math. Statist., 29:4 (1958), 972–994 | DOI | MR | Zbl
[21] Chibisov D. M., “Asymptotic expansions and deficiencies of tests”, Proceedings of the International Congress of Mathematicians (Warszawa, 1984), v. 2, PWN, Warsaw, 1984, 1063–1079 | MR | Zbl
[22] Hodges J. L., Lehmann E. L., “The efficiency of some nonparametric competitors of the $t$-test”, Ann. Math. Statist., 27:2 (1956), 324–335 | DOI | MR | Zbl
[23] Hodges J. L., Lehmann E. L., “Deficiency”, Ann. Math. Statist., 41:3 (1970), 783–801 | DOI | MR | Zbl
[24] Le Cam L., “Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses”, Univ. California Publ. Statist., 3 (1960), 37–98 | MR | Zbl
[25] Mann H. B., Whitney D. R., “On a test of whether one of two random variables is stochastically larger than the other”, Ann. Math. Statist., 18:1 (1947), 50–60 | DOI | MR | Zbl
[26] Wilcoxon F., “Individual comparisons by ranking methods”, Biometrics Bull., 1:6 (1945), 80–83 | DOI