On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds
Lobachevskii journal of mathematics, Tome 27 (2007), pp. 3-13

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present paper is to introduce a type of contact metric manifolds called $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds and to study their geometric properties. The existence of such manifolds is ensured by a non-trivial example.
Keywords: $(k,\mu)$-contact metric manifold, generalized $(k,\mu)$-contact metric manifold, locally $\phi$-symmetric and locally $\phi$-recurrent $(k,\mu)$-contact metric manifold.
@article{LJM_2007_27_a0,
     author = {K. K. Baishya and S. Eyasmin and A. A. Shaikh},
     title = {On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds},
     journal = {Lobachevskii journal of mathematics},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {27},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/}
}
TY  - JOUR
AU  - K. K. Baishya
AU  - S. Eyasmin
AU  - A. A. Shaikh
TI  - On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds
JO  - Lobachevskii journal of mathematics
PY  - 2007
SP  - 3
EP  - 13
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/
LA  - en
ID  - LJM_2007_27_a0
ER  - 
%0 Journal Article
%A K. K. Baishya
%A S. Eyasmin
%A A. A. Shaikh
%T On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds
%J Lobachevskii journal of mathematics
%D 2007
%P 3-13
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/
%G en
%F LJM_2007_27_a0
K. K. Baishya; S. Eyasmin; A. A. Shaikh. On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds. Lobachevskii journal of mathematics, Tome 27 (2007), pp. 3-13. http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/