On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds
Lobachevskii journal of mathematics, Tome 27 (2007), pp. 3-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The aim of the present paper is to introduce a type of contact metric manifolds called $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds and to study their geometric properties. The existence of such manifolds is ensured by a non-trivial example.
Keywords: $(k,\mu)$-contact metric manifold, generalized $(k,\mu)$-contact metric manifold, locally $\phi$-symmetric and locally $\phi$-recurrent $(k,\mu)$-contact metric manifold.
@article{LJM_2007_27_a0,
     author = {K. K. Baishya and S. Eyasmin and A. A. Shaikh},
     title = {On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds},
     journal = {Lobachevskii journal of mathematics},
     pages = {3--13},
     publisher = {mathdoc},
     volume = {27},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/}
}
TY  - JOUR
AU  - K. K. Baishya
AU  - S. Eyasmin
AU  - A. A. Shaikh
TI  - On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds
JO  - Lobachevskii journal of mathematics
PY  - 2007
SP  - 3
EP  - 13
VL  - 27
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/
LA  - en
ID  - LJM_2007_27_a0
ER  - 
%0 Journal Article
%A K. K. Baishya
%A S. Eyasmin
%A A. A. Shaikh
%T On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds
%J Lobachevskii journal of mathematics
%D 2007
%P 3-13
%V 27
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/
%G en
%F LJM_2007_27_a0
K. K. Baishya; S. Eyasmin; A. A. Shaikh. On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds. Lobachevskii journal of mathematics, Tome 27 (2007), pp. 3-13. http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/

[1] A. A. Shaikh and K. K. Baishya, “On a contact metric manifold”, Diff. Geom. Dynamical System, 8 (2006), 253–261 | MR

[2] A. A. Shaikh, K. Arslan, C. Murathan, and K. K. Baishya, “On 3-dimensional generalized $(k,\mu)$-contact metric manifold”, Balkan J. of Geom. and its Applications, 11 (2007) | Zbl

[3] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, 1976 | MR | Zbl

[4] D. E. Blair, “Two remarks on contact metric structures”, Tohoku Math. J., 29 (1977), 319–324 | DOI | MR | Zbl

[5] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, “Contact metric manifolds satisfying a nullity condition”, Israel J. of Math., 19 (1995), 189–214 | DOI | MR

[6] E. Boeckx, “A full Classification of contact metric $(k,\mu)$-spaces”, Illinois J. Math., 44 (2000), 212–219 | MR | Zbl

[7] S. Tanno, “Ricci curvatures of contact Riemannian manifolds”, Tohoku Math. J., 40 (1988), 441–448 | DOI | MR | Zbl

[8] T. Koufogiorgos and C. Tsichlias, “On the existence of new class of contact metric manifolds”, Canad. Math. Bull., XX(Y) (2000), 1–8 | MR

[9] T. Takahashi, “Sasakian $\phi$-symmetric spaces”, Tohoku Math. J., 29 (1977), 91–113 | DOI | MR | Zbl