Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2007_27_a0, author = {K. K. Baishya and S. Eyasmin and A. A. Shaikh}, title = {On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds}, journal = {Lobachevskii journal of mathematics}, pages = {3--13}, publisher = {mathdoc}, volume = {27}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/} }
TY - JOUR AU - K. K. Baishya AU - S. Eyasmin AU - A. A. Shaikh TI - On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds JO - Lobachevskii journal of mathematics PY - 2007 SP - 3 EP - 13 VL - 27 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/ LA - en ID - LJM_2007_27_a0 ER -
K. K. Baishya; S. Eyasmin; A. A. Shaikh. On $\phi$-recurrent generalized $(k,\mu)$-contact metric manifolds. Lobachevskii journal of mathematics, Tome 27 (2007), pp. 3-13. http://geodesic.mathdoc.fr/item/LJM_2007_27_a0/
[1] A. A. Shaikh and K. K. Baishya, “On a contact metric manifold”, Diff. Geom. Dynamical System, 8 (2006), 253–261 | MR
[2] A. A. Shaikh, K. Arslan, C. Murathan, and K. K. Baishya, “On 3-dimensional generalized $(k,\mu)$-contact metric manifold”, Balkan J. of Geom. and its Applications, 11 (2007) | Zbl
[3] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, Springer-Verlag, 1976 | MR | Zbl
[4] D. E. Blair, “Two remarks on contact metric structures”, Tohoku Math. J., 29 (1977), 319–324 | DOI | MR | Zbl
[5] D. E. Blair, T. Koufogiorgos and B. J. Papantoniou, “Contact metric manifolds satisfying a nullity condition”, Israel J. of Math., 19 (1995), 189–214 | DOI | MR
[6] E. Boeckx, “A full Classification of contact metric $(k,\mu)$-spaces”, Illinois J. Math., 44 (2000), 212–219 | MR | Zbl
[7] S. Tanno, “Ricci curvatures of contact Riemannian manifolds”, Tohoku Math. J., 40 (1988), 441–448 | DOI | MR | Zbl
[8] T. Koufogiorgos and C. Tsichlias, “On the existence of new class of contact metric manifolds”, Canad. Math. Bull., XX(Y) (2000), 1–8 | MR
[9] T. Takahashi, “Sasakian $\phi$-symmetric spaces”, Tohoku Math. J., 29 (1977), 91–113 | DOI | MR | Zbl