Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2007_26_a5, author = {G. Mustafa and S. Hashmi and K. P. Akhtar}, title = {Estimating error bounds of {Bajaj's} solid models and their control hexahedral meshes}, journal = {Lobachevskii journal of mathematics}, pages = {51--61}, publisher = {mathdoc}, volume = {26}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2007_26_a5/} }
TY - JOUR AU - G. Mustafa AU - S. Hashmi AU - K. P. Akhtar TI - Estimating error bounds of Bajaj's solid models and their control hexahedral meshes JO - Lobachevskii journal of mathematics PY - 2007 SP - 51 EP - 61 VL - 26 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2007_26_a5/ LA - en ID - LJM_2007_26_a5 ER -
G. Mustafa; S. Hashmi; K. P. Akhtar. Estimating error bounds of Bajaj's solid models and their control hexahedral meshes. Lobachevskii journal of mathematics, Tome 26 (2007), pp. 51-61. http://geodesic.mathdoc.fr/item/LJM_2007_26_a5/
[1] Bajaj C., Warren J., and Xu G., “A subdivision scheme for hexahedral meshes”, The Visual Computer, 18 (2002), 343–356 | DOI
[2] Catmull E., Clark J., “Recursively generated $B$-spline surfaces on arbitrary topological meshes”, Computer Aided Design, 10 (1978), 350–355 | DOI
[3] Chang Y-S., McDonnell K. T., and Qin H., “A new solid subdivision scheme based on box splines”, Proceedings of Solid Modeling, 2002, 226–233
[4] Chang Y-S., McDonnell K. T., and Qin H., “An interpolatory subdivision for volumetric models over simplicial complexes”, Proceedings of Shape Modeling International, 2003, 143–152
[5] Cheng F., “Estimating subdivision depths for rational curves and surfaces”, ACM Transactions on Graphics, 11:2 (1992), 140–151 | DOI | Zbl
[6] GhulamMustafa, Chen Falai, and Jiansong Deng, “Estimating error bounds for binary subdivision curves/surfaces”, J. Comp. Appl. Math., 193 (2006), 596–613 | DOI | MR
[7] MacCracken R., and Joy K. I., “Free-form deformations with lattices of arbitrary topology”, Computer Graphics Proceedings, Annual Conference Series ACM SIGGRAPH'96, 1996, 181–188
[8] Stam J., “Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values”, Computer Graphics Proceeding of SIGGRAPH'98, 1998, 395–404
[9] Xiao-Ming Zeng and Chen X. J., “Computational formula of depth for Catmull-Clark subdivision surfaces”, J. Comp. Appl. Math., 195:1–2 (2006), 252–262 | MR | Zbl