Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2007_26_a2, author = {K. Budsaba and P. Chen and A. I. Volodin}, title = {Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables}, journal = {Lobachevskii journal of mathematics}, pages = {17--25}, publisher = {mathdoc}, volume = {26}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/} }
TY - JOUR AU - K. Budsaba AU - P. Chen AU - A. I. Volodin TI - Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables JO - Lobachevskii journal of mathematics PY - 2007 SP - 17 EP - 25 VL - 26 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/ LA - en ID - LJM_2007_26_a2 ER -
%0 Journal Article %A K. Budsaba %A P. Chen %A A. I. Volodin %T Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables %J Lobachevskii journal of mathematics %D 2007 %P 17-25 %V 26 %I mathdoc %U http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/ %G en %F LJM_2007_26_a2
K. Budsaba; P. Chen; A. I. Volodin. Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables. Lobachevskii journal of mathematics, Tome 26 (2007), pp. 17-25. http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/