Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2007_26_a2, author = {K. Budsaba and P. Chen and A. I. Volodin}, title = {Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables}, journal = {Lobachevskii journal of mathematics}, pages = {17--25}, publisher = {mathdoc}, volume = {26}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/} }
TY - JOUR AU - K. Budsaba AU - P. Chen AU - A. I. Volodin TI - Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables JO - Lobachevskii journal of mathematics PY - 2007 SP - 17 EP - 25 VL - 26 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/ LA - en ID - LJM_2007_26_a2 ER -
%0 Journal Article %A K. Budsaba %A P. Chen %A A. I. Volodin %T Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables %J Lobachevskii journal of mathematics %D 2007 %P 17-25 %V 26 %I mathdoc %U http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/ %G en %F LJM_2007_26_a2
K. Budsaba; P. Chen; A. I. Volodin. Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables. Lobachevskii journal of mathematics, Tome 26 (2007), pp. 17-25. http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/
[1] Bryc W. and Smolenski W., “Moment conditions for almost sure convergence of weakly correlated random variables”, Proc. Amer. Math. Soc., 119 (1993), 629–635 | DOI | MR | Zbl
[2] Budsaba K., Chen P., and Volodin A., “Limiting behaviour of moving average processes based on a sequence of $\rho^-$ mixing random variables”, Thai Statistician: Journal of Thailand Statistical Association, 2007 (to appear) | Zbl
[3] Burton R. M. and Dehling H., “Large deviations for some weakly dependent random processes”, Statist. Probab. Lett., 9 (1990), 397–401 | DOI | MR | Zbl
[4] Ibragimov I. A., “Some limit theorem for stationary processes”, Theory Probab. Appl., 7 (1962), 349–382 | DOI | MR | Zbl
[5] Joag-Dev K. and Proschan F., “Negative association of random variables with applications”, Ann. Statist., 11 (1983), 286–295 | DOI | MR
[6] Li D., Rao M. B., and Wang X. C., “Complete convergence of moving average processes”, Statist. Probab. Lett., 14 (1992), 111–114 | DOI | MR | Zbl
[7] Loève M., Probability Theory II, 4 edition, Spring-Verlag, New York, 1978 | MR | Zbl
[8] Móricz F. A., Serfling R. J., Stout W. F., “Moment and probability bounds with quasisuperadditive structure for the maximum partial sum”, Ann. Probab., 10 (1982), 1032–1040 | DOI | MR | Zbl
[9] Seneta. E., Regularly varying functions, Lecture Notes in Math., 508, Springer, Berlin, 1976 | MR | Zbl
[10] Shao Q. M., “A comparison theorem on inequalities between negatively associated and independent random variables”, J. Theor. Probab., 13 (2000), 343–356 | DOI | MR | Zbl
[11] Wang J. F. and Lu F. B., “Inequalities of maximum of partial sums and weak convergence for a class of weak dependent random variables”, Acta Math. Sin. (Engl. Ser.), 22 (2006), 693–700 | DOI | MR | Zbl