Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables
Lobachevskii journal of mathematics, Tome 26 (2007), pp. 17-25

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\{Y_i,-\infty$ be a doubly infinite sequence of identically distributed $\rho^-$-mixing or negatively associated random variables, $\{a_i,-\infty$ a sequence of real numbers. In this paper, we prove the rate of convergence and strong law of large numbers for the partial sums of moving average processes $\{\sum_{i=-\infty}^\infty a_iY_{i+n},n\ge1\}$ under some moment conditions.
@article{LJM_2007_26_a2,
     author = {K. Budsaba and P. Chen and A. I. Volodin},
     title = {Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables},
     journal = {Lobachevskii journal of mathematics},
     pages = {17--25},
     publisher = {mathdoc},
     volume = {26},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/}
}
TY  - JOUR
AU  - K. Budsaba
AU  - P. Chen
AU  - A. I. Volodin
TI  - Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables
JO  - Lobachevskii journal of mathematics
PY  - 2007
SP  - 17
EP  - 25
VL  - 26
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/
LA  - en
ID  - LJM_2007_26_a2
ER  - 
%0 Journal Article
%A K. Budsaba
%A P. Chen
%A A. I. Volodin
%T Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables
%J Lobachevskii journal of mathematics
%D 2007
%P 17-25
%V 26
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/
%G en
%F LJM_2007_26_a2
K. Budsaba; P. Chen; A. I. Volodin. Limiting behaviour of moving average processes based on a~sequence of $\rho^-$ mixing and negatively associated random variables. Lobachevskii journal of mathematics, Tome 26 (2007), pp. 17-25. http://geodesic.mathdoc.fr/item/LJM_2007_26_a2/