Kinematic geometry of triangles and the study of the three-body problem
Lobachevskii journal of mathematics, Tome 25 (2007), pp. 9-130

Voir la notice de l'article provenant de la source Math-Net.Ru

The classical three-body problem studies the motion of a system with three point masses under the action of the Newtonian gravitational potential. The paper concerns both the geometry and the analysis of the solutions of the above problem.
@article{LJM_2007_25_a1,
     author = {W.-Y. Hsiang and E. Straume},
     title = {Kinematic geometry of triangles and the study of the three-body problem},
     journal = {Lobachevskii journal of mathematics},
     pages = {9--130},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2007_25_a1/}
}
TY  - JOUR
AU  - W.-Y. Hsiang
AU  - E. Straume
TI  - Kinematic geometry of triangles and the study of the three-body problem
JO  - Lobachevskii journal of mathematics
PY  - 2007
SP  - 9
EP  - 130
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2007_25_a1/
LA  - en
ID  - LJM_2007_25_a1
ER  - 
%0 Journal Article
%A W.-Y. Hsiang
%A E. Straume
%T Kinematic geometry of triangles and the study of the three-body problem
%J Lobachevskii journal of mathematics
%D 2007
%P 9-130
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2007_25_a1/
%G en
%F LJM_2007_25_a1
W.-Y. Hsiang; E. Straume. Kinematic geometry of triangles and the study of the three-body problem. Lobachevskii journal of mathematics, Tome 25 (2007), pp. 9-130. http://geodesic.mathdoc.fr/item/LJM_2007_25_a1/