The probability of a~successful allocation of ball groups by boxes
Lobachevskii journal of mathematics, Tome 25 (2007), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p=p_{Nn}$ be the probability of a successful allocation of $n$ groups of distinguishable balls in $N$ boxes in equiprobable scheme for group allocation of balls with the following assumption: each group contains $m$ balls and each box contains not more than $q$ balls from a same group. If $q=1$, then we easily calculate $p$ and observe that $p\to e^{-\frac{m(m-1)}2\alpha_0}$ as $n,N\to\infty$ such that $\alpha=\frac nN\to\alpha_0\infty$. In the case $2\le q$ we also find an explicit formula for the probability and prove that $p\to1$ as $n,N\to\infty$ such that $\alpha=\frac nN\le\alpha'\infty$.
Keywords: generating function, Cauchy integral.
Mots-clés : equiprobable scheme for group allocation of particles
@article{LJM_2007_25_a0,
     author = {F. G. Avkhadiev and A. N. Chuprunov},
     title = {The probability of a~successful allocation of ball groups by boxes},
     journal = {Lobachevskii journal of mathematics},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {25},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2007_25_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
AU  - A. N. Chuprunov
TI  - The probability of a~successful allocation of ball groups by boxes
JO  - Lobachevskii journal of mathematics
PY  - 2007
SP  - 3
EP  - 7
VL  - 25
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2007_25_a0/
LA  - en
ID  - LJM_2007_25_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%A A. N. Chuprunov
%T The probability of a~successful allocation of ball groups by boxes
%J Lobachevskii journal of mathematics
%D 2007
%P 3-7
%V 25
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2007_25_a0/
%G en
%F LJM_2007_25_a0
F. G. Avkhadiev; A. N. Chuprunov. The probability of a~successful allocation of ball groups by boxes. Lobachevskii journal of mathematics, Tome 25 (2007), pp. 3-7. http://geodesic.mathdoc.fr/item/LJM_2007_25_a0/

[1] Békéssy, A., “On classical occupancy problems. I”, Magy. Tud. Akad. Mat. Kutató Int. Kozl., 8:1–2 (1963), 59–71 | MR | Zbl

[2] Békéssy, A., “On classical occupancy problems. II”, Magy. Tud. Akad. Mat. Kutató Int. Kozl., 9:1–2 (1964), 133–141 | MR

[3] Kolchin, V.F., Sevast'ynov, B.A., and Chistiakov, V.P., Random allocations, W.H. Winston Sons, Washington D.C., 1978 | Zbl

[4] Vatutin, V.A., Mikhajlov, V.G., “Limit theorems for the number of empty cells in an equiprobable scheme of group allocation of particles”, Theory Probab. Appl., 27:34 (1982), 734–743 | DOI | MR | Zbl

[5] Timashev, A.N., “On the large-deviation asymptotics in an allocation scheme of particles into distinguishable cells with restrictions on the size of the cells”, Theory Probab. Appl., 45:3 (2000), 494–506 | DOI | MR | Zbl

[6] Weiss, I., “Limiting distributions in some occupancy problems”, Ann. Math. Statist., 29:3 (1958), 878–884 | DOI | MR | Zbl