Positive solutions for a~singular second order ordinary differential equation
Lobachevskii journal of mathematics, Tome 24 (2006), pp. 135-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is concerned with the positive solutions for a singular second order ordinary differential equation. Under appropriate conditions, by the classical method of elliptic regularization, we prove the existence of position solutions.
Keywords: singular differential equation
Mots-clés : positive solution, existence.
@article{LJM_2006_24_a6,
     author = {W. S. Zhou and S. F. Cai},
     title = {Positive solutions for a~singular second order ordinary differential equation},
     journal = {Lobachevskii journal of mathematics},
     pages = {135--142},
     publisher = {mathdoc},
     volume = {24},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_24_a6/}
}
TY  - JOUR
AU  - W. S. Zhou
AU  - S. F. Cai
TI  - Positive solutions for a~singular second order ordinary differential equation
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 135
EP  - 142
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_24_a6/
LA  - en
ID  - LJM_2006_24_a6
ER  - 
%0 Journal Article
%A W. S. Zhou
%A S. F. Cai
%T Positive solutions for a~singular second order ordinary differential equation
%J Lobachevskii journal of mathematics
%D 2006
%P 135-142
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_24_a6/
%G en
%F LJM_2006_24_a6
W. S. Zhou; S. F. Cai. Positive solutions for a~singular second order ordinary differential equation. Lobachevskii journal of mathematics, Tome 24 (2006), pp. 135-142. http://geodesic.mathdoc.fr/item/LJM_2006_24_a6/

[1] R. P. Agarwal, D. O'Regan, “Singular boundary value problems for superlinear second order ordinary and delay differential equations”, J. Differential Equations, 130 (1996), 333–355 | DOI | MR | Zbl

[2] D. O'Regan, Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994 | MR

[3] D. O'Regan, Existence Theory for Nonlinear Differential Equations, Kluwer Acad., Dordrecht/Boston/London, 1997

[4] A. Tineo, “Existence theorems for a singular two points Dirichlet problem”, Nonlinear Anal., 19 (1992), 323–333 | DOI | MR | Zbl

[5] J. Wang, J. Jiang, “The existence of positive solutions to a singular nonlinear boundary value problem”, J. Math. Anal. Appl., 176 (1993), 322–329 | DOI | MR | Zbl

[6] S. Stanék, “Positive solutions for singular semipositive boundary value problems”, Math. Comput. Model, 33 (2001), 341–351 | DOI | MR | Zbl

[7] D. Q. Jiang, “Upper and lower solutions method and a singular boundary value problem”, Z. Angew. Math. Mech., 82:7 (2002), 481–490 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[8] D. Bonheure, J. M. Gomes, L. Sanchez, “Positive solutions of a second order singular ordinary differential equation”, Nonlinear Anal. TMA, 61 (2005), 1383–1399 | DOI | MR | Zbl

[9] M. Bertsch, M. Ughi, “Positivity properties of viscosity solutions of a degenerate parabolic equation”, Nonlinear Anal., 14 (1990), 571–592 | DOI | MR | Zbl

[10] Translations of Mathematical Monographs, 174, American Mathematical Society, Providence, RI, 1998 | MR | Zbl