$L^\infty$-error estimate for a~discrete two-sided obstacle problem and multilevel projective algorithm
Lobachevskii journal of mathematics, Tome 24 (2006), pp. 43-53

Voir la notice de l'article provenant de la source Math-Net.Ru

We are interested in the approximation in the $L^\infty$-norm of variational inequalities with two-sided obstacle. We show that the order of convergence will be the same as that of variational inequalities with one obstacle. We also give multilevel projective algorithm and discuss its convergence.
Keywords: variational inequalities, $L^\infty$-error estimate, Multilevel projective algorithm.
@article{LJM_2006_24_a2,
     author = {Y.-J. Jiang and J.-P. Zeng},
     title = {$L^\infty$-error estimate for a~discrete two-sided obstacle problem and multilevel projective algorithm},
     journal = {Lobachevskii journal of mathematics},
     pages = {43--53},
     publisher = {mathdoc},
     volume = {24},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_24_a2/}
}
TY  - JOUR
AU  - Y.-J. Jiang
AU  - J.-P. Zeng
TI  - $L^\infty$-error estimate for a~discrete two-sided obstacle problem and multilevel projective algorithm
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 43
EP  - 53
VL  - 24
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_24_a2/
LA  - en
ID  - LJM_2006_24_a2
ER  - 
%0 Journal Article
%A Y.-J. Jiang
%A J.-P. Zeng
%T $L^\infty$-error estimate for a~discrete two-sided obstacle problem and multilevel projective algorithm
%J Lobachevskii journal of mathematics
%D 2006
%P 43-53
%V 24
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_24_a2/
%G en
%F LJM_2006_24_a2
Y.-J. Jiang; J.-P. Zeng. $L^\infty$-error estimate for a~discrete two-sided obstacle problem and multilevel projective algorithm. Lobachevskii journal of mathematics, Tome 24 (2006), pp. 43-53. http://geodesic.mathdoc.fr/item/LJM_2006_24_a2/