Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2006_24_a2, author = {Y.-J. Jiang and J.-P. Zeng}, title = {$L^\infty$-error estimate for a~discrete two-sided obstacle problem and multilevel projective algorithm}, journal = {Lobachevskii journal of mathematics}, pages = {43--53}, publisher = {mathdoc}, volume = {24}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2006_24_a2/} }
TY - JOUR AU - Y.-J. Jiang AU - J.-P. Zeng TI - $L^\infty$-error estimate for a~discrete two-sided obstacle problem and multilevel projective algorithm JO - Lobachevskii journal of mathematics PY - 2006 SP - 43 EP - 53 VL - 24 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2006_24_a2/ LA - en ID - LJM_2006_24_a2 ER -
%0 Journal Article %A Y.-J. Jiang %A J.-P. Zeng %T $L^\infty$-error estimate for a~discrete two-sided obstacle problem and multilevel projective algorithm %J Lobachevskii journal of mathematics %D 2006 %P 43-53 %V 24 %I mathdoc %U http://geodesic.mathdoc.fr/item/LJM_2006_24_a2/ %G en %F LJM_2006_24_a2
Y.-J. Jiang; J.-P. Zeng. $L^\infty$-error estimate for a~discrete two-sided obstacle problem and multilevel projective algorithm. Lobachevskii journal of mathematics, Tome 24 (2006), pp. 43-53. http://geodesic.mathdoc.fr/item/LJM_2006_24_a2/
[1] C. Baiocchi, “Estimation d'Erreur Dans $L^\infty$ pour les Inequations a Obstacle”, Mathematical Aspects of Finite Element Methods, Lect. Notes Math., 606, eds. I. Galligani, E. Magenes, 1977, 27–34 | MR | Zbl
[2] L. Badea, “A Generalization of the Schwarz Alternating Method to an Arbitrary Number of Subdomain”, Numer. Math., 55 (1989), 61–81 | DOI | MR | Zbl
[3] P. G. Ciarlet, Functions de Green Discretes et Principe du Maximum Discret, Ph.D thesis, University of Paris, 1971
[4] Ph. Cortey-Dumont, “On Finite Element Approximation in the $L^\infty$-Norm of Variational Inequalities”, Numer. Math., 47 (1985), 45–57 | DOI | MR | Zbl
[5] S. Finzi-Vita, “$L^\infty$-Error Estimates for Variational Inequalities with Hölder Continuous Obstacle”, RAIRO Anal. Numer., 16 (1982), 27–37 | MR | Zbl
[6] H. Lewy and G. Stampacchia, “On the Regularity of The Solution of Variational Inequality”, Comm. Pure Appl. Math., 22 (1969), 153–188 | DOI | MR | Zbl
[7] J. A. Nitsche, “$L^\infty$-Convergence of Finite Element Approximations”, Mathematical Aspects of Finite Element Methods, Lect. Notes Math., 606, eds. I. Galligani, E. Magenes, 1977, 261–274 | MR | Zbl
[8] R. H. Nochetto,, “Sharp $L^\infty$-Error Estimates for Semilinear Elliptic Problems with Free Boundaries”, Numer. Math., 54 (1988), 243–255 | DOI | MR | Zbl
[9] J. S. Pang and T. Chan, “Iterative Methods for Variational and Complementarity Problems”, Math. Program., 24 (1982), 284–313 | DOI | MR | Zbl
[10] G. Strehlau, “$L^\infty$-Error Estimate for the Numerical Treatment of the Obstacle Problem by the Penalty Method”, Numer. Funct. Anal. Optim., 10 (1989), 185–198 | DOI | MR | Zbl
[11] P. Tarvainen, Block Relaxation Methods for Algebraic Obstacle Problems with $M$-matrices: Theory and Applications, Doctoral Thesis, Jyväskylä: Dept. Math., University of Jyväskylä, 1994 | MR | Zbl
[12] J. P. Zeng and S.Z. Zhou, “On Monotone and Geometric Convergence of Schwarz Methods for Two-sided Obstacle Problems”, SIAM J. Numer. Anal., 35 (1998), 600–616 | DOI | MR | Zbl
[13] Y. M. Zhang, A Monotonicity Principle and L1-Error Bound for a Discrete Obstacle Problem, Technical Report (TR-96-21), University of Chicago, 1996
[14] Y. M. Zhang, “Multilevel Projection Algorithm for Solving Obstacle Problems”, Comput. Math. Appl., 41 (2001), 1505–1513 | DOI | MR | Zbl