Associativity constraints, braidings and quantizations of modules with grading and action
Lobachevskii journal of mathematics, Tome 23 (2006), pp. 5-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study quantizations, associativity constraints and braidings in the monoidal category of monoid graded modules over a commutative ring. All of them can be described in terms of the cohomology of the underlying (finite) monoid. The Fourier transform of finite groups gives a corresponding description in the monoidal category of modules with action by a group.
@article{LJM_2006_23_a0,
     author = {H. L. Huru},
     title = {Associativity constraints, braidings and quantizations of modules with grading and action},
     journal = {Lobachevskii journal of mathematics},
     pages = {5--27},
     publisher = {mathdoc},
     volume = {23},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_23_a0/}
}
TY  - JOUR
AU  - H. L. Huru
TI  - Associativity constraints, braidings and quantizations of modules with grading and action
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 5
EP  - 27
VL  - 23
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_23_a0/
LA  - en
ID  - LJM_2006_23_a0
ER  - 
%0 Journal Article
%A H. L. Huru
%T Associativity constraints, braidings and quantizations of modules with grading and action
%J Lobachevskii journal of mathematics
%D 2006
%P 5-27
%V 23
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_23_a0/
%G en
%F LJM_2006_23_a0
H. L. Huru. Associativity constraints, braidings and quantizations of modules with grading and action. Lobachevskii journal of mathematics, Tome 23 (2006), pp. 5-27. http://geodesic.mathdoc.fr/item/LJM_2006_23_a0/

[1] Henri Cartan, Samuel Eilenberg, Homological algebra, Princeton University Press, 1956 | MR | Zbl

[2] V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press, 1994 | MR | Zbl

[3] S. Eilenberg, S. Mac Lane, “Cohomology Theory in Abstract Groups 1”, Annals of Mathematics, 48:1 (1947) | DOI

[4] H. L. Huru, V. V. Lychagin, Quantization and classical non-commutative and non-associative algebras, Preprint, Institut Mittag-Leffler, Stockholm, 2005 | MR | Zbl

[5] P. K. Jakobsen, V. Lychagin, The Categorical Theory of Relations and Quantizations, 2001

[6] V. V. Lychagin, “Quantizations of Differential Equations”, Pergamon Nonlinear Analysis, 47 (2001), 2621–2632 | DOI | MR | Zbl

[7] V. V. Lychagin, “Calculus and Quantizations Over Hopf Algebras”, Acta Applicandae Mathematicae, 1998, 1–50 | MR

[8] V. V. Lychagin, Quantizations of Braided Differential Operators, Erwin Schrödinger International Institute of Mathematical Physics, Wien, and Sophus Lie Center, Moscow, 1991

[9] Saunders Mac Lane, Categories for the working mathematician, Graduate Texts in Mathematics, 5, Springer, 1998 | MR | Zbl

[10] Yuri I. Manin, Topics in Noncommutative Geometry, Princeton University Press, 1991 | MR

[11] Richard D. Schafer, An Introduction to Nonassociative Algebras, Pure and Applied Mathematics, 22, Academic Press, 1966 | MR

[12] J.-P. Serre, Linear Representations of Finite Groups, Graduate Texts in Mathematics, 42, Springer-Verlag, 1977 | MR | Zbl

[13] Audrey Terras, Fourier Analysis on Finite groups an Applications, London Mathematical Society Student Text, 43, Cambridge University Press, 1999 | MR | Zbl