Index vector-function and minimal cycles
Lobachevskii journal of mathematics, Tome 22 (2006), pp. 35-46

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $P$ be a closed triangulated manifold, $\dim{P}=n$. We consider the group of simplicial 1-chains $C_1(P)=C_1(P,\mathbb Z_2)$ and the homology group $H_1(P)=H_1(P,\mathbb Z_2)$. We also use some nonnegative weighting function $L\colon C_1(P)\to\mathbb R$. For any homological class $[x]\in H_1(P)$ the method proposed in article builds a cycle $z\in[x]$ with minimal weight $L(z)$. The main idea is in using a simplicial scheme of space of the regular covering $p\colon\hat P\to P$ with automorphism group $G\cong H_1(P)$. We construct this covering applying the index vector-function $J\colon C_1(P)\to\mathbb Z_2^r$ relative to any basis of group $H_{n-1}(P)$, $r=\operatorname{rank}H_{n-1}(P)$.
Keywords: triangulated manifold, homology group, minimal cycle, intersection index, regular covering.
@article{LJM_2006_22_a4,
     author = {A. V. Lapteva and E. I. Yakovlev},
     title = {Index vector-function and minimal cycles},
     journal = {Lobachevskii journal of mathematics},
     pages = {35--46},
     publisher = {mathdoc},
     volume = {22},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_22_a4/}
}
TY  - JOUR
AU  - A. V. Lapteva
AU  - E. I. Yakovlev
TI  - Index vector-function and minimal cycles
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 35
EP  - 46
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_22_a4/
LA  - en
ID  - LJM_2006_22_a4
ER  - 
%0 Journal Article
%A A. V. Lapteva
%A E. I. Yakovlev
%T Index vector-function and minimal cycles
%J Lobachevskii journal of mathematics
%D 2006
%P 35-46
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_22_a4/
%G en
%F LJM_2006_22_a4
A. V. Lapteva; E. I. Yakovlev. Index vector-function and minimal cycles. Lobachevskii journal of mathematics, Tome 22 (2006), pp. 35-46. http://geodesic.mathdoc.fr/item/LJM_2006_22_a4/