Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2006_22_a2, author = {M. Darus and Kh. al-Shaqsi}, title = {On harmonic univalent functions defined by a~generalized {Ruscheweyh} derivatives operator}, journal = {Lobachevskii journal of mathematics}, pages = {19--26}, publisher = {mathdoc}, volume = {22}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2006_22_a2/} }
TY - JOUR AU - M. Darus AU - Kh. al-Shaqsi TI - On harmonic univalent functions defined by a~generalized Ruscheweyh derivatives operator JO - Lobachevskii journal of mathematics PY - 2006 SP - 19 EP - 26 VL - 22 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2006_22_a2/ LA - en ID - LJM_2006_22_a2 ER -
M. Darus; Kh. al-Shaqsi. On harmonic univalent functions defined by a~generalized Ruscheweyh derivatives operator. Lobachevskii journal of mathematics, Tome 22 (2006), pp. 19-26. http://geodesic.mathdoc.fr/item/LJM_2006_22_a2/
[1] S. Ruscheweyh, “New criteria for univalent functions”, Proc. Amer. Math. Soc., 49 (1975), 109–115 | DOI | MR | Zbl
[2] J. Clunie and T. Shell-Small, “Harmonic univalent functions”, Ann. Acad. Aci. Fenn. Ser. A I Math., 9 (1984), 3–25 | MR | Zbl
[3] H. Silverman, “Harmonic univalent functions with negative coefficients”, Proc. Amer. Math. Soc., 51 (1998), 283–289 | MR
[4] H. Silverman and E. M. Silvia, “Subclasses of harmonic univalent functions”, New Zeal. J. Math., 28 (1999), 275–284 | MR | Zbl
[5] J. M. Jahangiri, “Harmonic functions starlike in the unite disk”, J. Math. Anal. Appl., 235 (1999), 470–477 | DOI | MR | Zbl
[6] S. Yalçin and M. Öztürk, “A new subclass of complex harmonic functions”, Math. Ineq. Appl., 7 (2004), 55–61 | MR | Zbl
[7] K. Al Shaqsi and M. Darus, “On univalent functions with respect to $K$-symmetric points given by a generalised Ruscheweyh derivatives operator” (to appear)