A note on Krull dimension of skew polynomial rings
Lobachevskii journal of mathematics, Tome 22 (2006), pp. 3-6
Let $A$ be a commutative Noetherian ring such that Krull dimension of $A$ is $\alpha$. Let $M$ be a finitely generated critical module over $A[x,\sigma]$, (where $\sigma$ is an automorphism of $A$) and Krull dimension of $M$ is $\alpha+1$. Then $M$ has a prime annihilator.
Keywords:
critical module, prime annihilator.
Mots-clés : automorphism, Krull dimension
Mots-clés : automorphism, Krull dimension
@article{LJM_2006_22_a0,
author = {V. K. Bhat},
title = {A note on {Krull} dimension of skew polynomial rings},
journal = {Lobachevskii journal of mathematics},
pages = {3--6},
year = {2006},
volume = {22},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2006_22_a0/}
}
V. K. Bhat. A note on Krull dimension of skew polynomial rings. Lobachevskii journal of mathematics, Tome 22 (2006), pp. 3-6. http://geodesic.mathdoc.fr/item/LJM_2006_22_a0/
[1] A. W. Goldie, The structure of Noetherian rings, Lecture notes in Mathematics, 246, Springer Verlag, 1970–71 | MR
[2] R. Gordon, Some aspects of non-commutative Noetherian rings, Springer Verlag, 1975
[3] R. Gordon and J. C. Robson, Krull dimension, Memoirs Amer. Math. Soc., 133, 1974 | MR | Zbl
[4] A. V. Jategoankar, “Skew polynomial rings over orders in artinian rings”, J. Algebra, 21 (1972), 51–59 | DOI | MR
[5] A. V. Jategoankar, “Jacobson's conjecture and modules over FBN rings”, J. Algebra, 30 (1974), 105–121
[6] C. L. Wangneo, Polynomial rings over FBN rings, Algebra and its applications, Marcel Dekker INC, 1984 | MR