A note on Krull dimension of skew polynomial rings
Lobachevskii journal of mathematics, Tome 22 (2006), pp. 3-6

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a commutative Noetherian ring such that Krull dimension of $A$ is $\alpha$. Let $M$ be a finitely generated critical module over $A[x,\sigma]$, (where $\sigma$ is an automorphism of $A$) and Krull dimension of $M$ is $\alpha+1$. Then $M$ has a prime annihilator.
Keywords: critical module, prime annihilator.
Mots-clés : automorphism, Krull dimension
@article{LJM_2006_22_a0,
     author = {V. K. Bhat},
     title = {A note on {Krull} dimension of skew polynomial rings},
     journal = {Lobachevskii journal of mathematics},
     pages = {3--6},
     publisher = {mathdoc},
     volume = {22},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_22_a0/}
}
TY  - JOUR
AU  - V. K. Bhat
TI  - A note on Krull dimension of skew polynomial rings
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 3
EP  - 6
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_22_a0/
LA  - en
ID  - LJM_2006_22_a0
ER  - 
%0 Journal Article
%A V. K. Bhat
%T A note on Krull dimension of skew polynomial rings
%J Lobachevskii journal of mathematics
%D 2006
%P 3-6
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_22_a0/
%G en
%F LJM_2006_22_a0
V. K. Bhat. A note on Krull dimension of skew polynomial rings. Lobachevskii journal of mathematics, Tome 22 (2006), pp. 3-6. http://geodesic.mathdoc.fr/item/LJM_2006_22_a0/