Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2006_21_a1, author = {A. Benbrik and A. Mbarki and S. Lahrech and A. Ouahab}, title = {Ekeland's principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics}, journal = {Lobachevskii journal of mathematics}, pages = {33--44}, publisher = {mathdoc}, volume = {21}, year = {2006}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2006_21_a1/} }
TY - JOUR AU - A. Benbrik AU - A. Mbarki AU - S. Lahrech AU - A. Ouahab TI - Ekeland's principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics JO - Lobachevskii journal of mathematics PY - 2006 SP - 33 EP - 44 VL - 21 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2006_21_a1/ LA - en ID - LJM_2006_21_a1 ER -
%0 Journal Article %A A. Benbrik %A A. Mbarki %A S. Lahrech %A A. Ouahab %T Ekeland's principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics %J Lobachevskii journal of mathematics %D 2006 %P 33-44 %V 21 %I mathdoc %U http://geodesic.mathdoc.fr/item/LJM_2006_21_a1/ %G en %F LJM_2006_21_a1
A. Benbrik; A. Mbarki; S. Lahrech; A. Ouahab. Ekeland's principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics. Lobachevskii journal of mathematics, Tome 21 (2006), pp. 33-44. http://geodesic.mathdoc.fr/item/LJM_2006_21_a1/