Ekeland's principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics
Lobachevskii journal of mathematics, Tome 21 (2006), pp. 33-44

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a new characterization of uniform spaces via Families of generalized quasi-metrics, we present a variant of Ekeland's variational principle for vector-valued maps being a consequence of minimal point theorem.
Keywords: Ekeland's principle for vector-valued maps, minimal point theorem, uniform spaces, family of generalized quasi-metrics.
@article{LJM_2006_21_a1,
     author = {A. Benbrik and A. Mbarki and S. Lahrech and A. Ouahab},
     title = {Ekeland's principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics},
     journal = {Lobachevskii journal of mathematics},
     pages = {33--44},
     publisher = {mathdoc},
     volume = {21},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_21_a1/}
}
TY  - JOUR
AU  - A. Benbrik
AU  - A. Mbarki
AU  - S. Lahrech
AU  - A. Ouahab
TI  - Ekeland's principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 33
EP  - 44
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_21_a1/
LA  - en
ID  - LJM_2006_21_a1
ER  - 
%0 Journal Article
%A A. Benbrik
%A A. Mbarki
%A S. Lahrech
%A A. Ouahab
%T Ekeland's principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics
%J Lobachevskii journal of mathematics
%D 2006
%P 33-44
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_21_a1/
%G en
%F LJM_2006_21_a1
A. Benbrik; A. Mbarki; S. Lahrech; A. Ouahab. Ekeland's principle for vector-valued maps based on the characterization of uniform spaces via families of generalized quasi-metrics. Lobachevskii journal of mathematics, Tome 21 (2006), pp. 33-44. http://geodesic.mathdoc.fr/item/LJM_2006_21_a1/