Hardy type inequalities in higher dimensions with explicit estimate of constants
Lobachevskii journal of mathematics, Tome 21 (2006), pp. 3-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\Omega$ be an open set in $\mathbb R^n$ such that $\Omega\ne\mathbb R^n$. For $1\le p\infty$, $1$ and $\delta=\operatorname{dist}(x,\partial\Omega)$ we estimate the Hardy constant $$ c_p(s,\Omega)=\sup\{\|f/\delta^{s/p}\|_{L^p(\Omega)}:f\in C_0^\infty(\Omega),\ \|(\nabla f)/\delta^{s/p-1}\|_{L^p(\Omega)}=1\} $$ and some related quantities. For open sets $\Omega\subset\mathbb R^2$ we prove the following bilateral estimates $$ \min\{2,p\}M_0(\Omega)\le c_p(2,\Omega)\le 2p(\pi M_0(\Omega)+a_0)^2, \quad a_0=4.38, $$ where $M_0(\Omega)$ is the geometrical parameter defined as the maximum modulus of ring domains in $\Omega$ with center on $\partial\Omega$. Since the condition $M_0 (\Omega)\infty$ means the uniformly perfectness of $\partial\Omega$, these estimates give a direct proof of the following Ancona–Pommerenke theorem: $c_2(2,\Omega)$ is finite if and only if the boundary set $\partial\Omega$ is uniformly perfect (see [2], [22] and [40]). Moreover, we obtain the following direct extension of the one dimensional Hardy inequality to the case $n\ge 2$: if $s>n$, then for arbitrary open sets $\Omega\subset\mathbb R^n$ ($\Omega\ne\mathbb R^n$) and any $p\in[1,\infty)$ the sharp inequality $c_p(s,\Omega)\le p/(s-n)$ is valid. This gives a solution of a known problem due to J. L. Lewis [31] and A. Wannebo [44]. Estimates of constants in certain other Hardy and Rellich type inequalities are also considered. In particular, we obtain an improved version of a Hardy type inequality by H. Brezis and M. Marcus [13] for convex domains and give its generalizations.
Keywords: Hardy type inequalities, distance to the boundary, uniformly perfect sets, Rellich type inequalities.
@article{LJM_2006_21_a0,
     author = {F. G. Avkhadiev},
     title = {Hardy type inequalities in higher dimensions  with explicit estimate of constants},
     journal = {Lobachevskii journal of mathematics},
     pages = {3--31},
     publisher = {mathdoc},
     volume = {21},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2006_21_a0/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Hardy type inequalities in higher dimensions  with explicit estimate of constants
JO  - Lobachevskii journal of mathematics
PY  - 2006
SP  - 3
EP  - 31
VL  - 21
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2006_21_a0/
LA  - en
ID  - LJM_2006_21_a0
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Hardy type inequalities in higher dimensions  with explicit estimate of constants
%J Lobachevskii journal of mathematics
%D 2006
%P 3-31
%V 21
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2006_21_a0/
%G en
%F LJM_2006_21_a0
F. G. Avkhadiev. Hardy type inequalities in higher dimensions  with explicit estimate of constants. Lobachevskii journal of mathematics, Tome 21 (2006), pp. 3-31. http://geodesic.mathdoc.fr/item/LJM_2006_21_a0/

[1] L. V. Ahlfors, Conformal invariants, Topics in Geometric Function Theory, McGraw–Hill, 1973 | MR | Zbl

[2] A. Ancona, “On strong barriers and an inequality of Hardy for domains in $\mathbb R^n$”, J. London Math. Soc. (2), 37 (1986), 274–290 | DOI | MR

[3] Sb. Math., 189:12 (1998), 1739–1748 | DOI | MR | Zbl

[4] F. G. Avkhadiev, “Geometrical characteristics of domains that are equivalent to the norms of some embedding operators”, Proc. of Int. Conference in honour of Chebyshev, V. 1, Moscow State University, 1996, 12–14 (Russian)

[5] F. G. Avkhadiev, “On multidimensional Hardy type inequalities”, Int. Conference “Geom. Analysis and its Applications”, Abstracts, Volgograd State University, 2004, 6–8 (Russian)

[6] F. G. Avkhadiev, “Hardy type inequalities in plane and space domains”, Int. Conference and workshop dedicated to the centennial of Sergei Mikhailovich Nikolskii, Russian Academy of Sciences, Moscow, 2005, 21 (Russian)

[7] F. G. Avkhadiev, “Sharp estimates of constants in the Hardy type inequalities”, 13-th Saratov winter school on the function theory and its applications, Saratov State University, 2006, 4–5 (Russian)

[8] C. Bandle, Isoperimetric Inequalities and Applications, Pitman Publ. Inc., Boston, Mass. – London, 1980 | MR | Zbl

[9] C. Bandle and M. Flucher, “Harmonic radius and concentration of energy, hyperbolic radius and Liouville's equations $\Delta U=e^U$ and $\Delta U=U^{(n+2)/(n-2)}$”, SIAM Rev. (2), 38 (1996), 191–238 | DOI | MR | Zbl

[10] C. Bandle and M. Flucher, “Table of inequalities in elliptic boundary value problems”, Recent Progress in Inequalities, ed. V. Milovanovic, Kluwer Academic Publ., 1998, 97–125 | MR | Zbl

[11] R. Bañuelos, M. Van den Berg and T. Carroll, “Torsional rigidity and expected lifetime of Brownian motion”, J. London Math. Soc. (2), 66 (2002), 499–512 | DOI | MR | Zbl

[12] A. E. Beardon and Ch. Pommerenke, “The Poincaré metric of plane domains”, J. London Math. Soc. (2), 18 (1978), 475–483 | DOI | MR | Zbl

[13] H. Brezis and M. Marcus, “Hardy's inequalities revisited”, Dedicated to Ennio De Giorgi, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25 (1997, 1998), 217–237 | MR | Zbl

[14] V. I. Burenkov, Sobolev Spaces on Domains, Teubner - Texte zur Mathematik, 137, Leipzig, 1998 | MR | Zbl

[15] A. P. Calderon and A. Zigmund, “Local properties of solutions elliptic partial differential equations”, Studia Math., 20 (1961), 171–225 | MR | Zbl

[16] E. B. Davies, “A Review of Hardy Inequalities”, The Maz'ya anniversary Collection. Vol. 2, Oper. Theory Adv. Appl., 110 (1999), 55–67 | MR | Zbl

[17] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, 1989 | MR | Zbl

[18] E. B. Davies and A. M. Hinz, “Explicit constants for Rellich inequalities in $L^p(\Omega)$”, Math. Z., 227 (1998), 511–523 | DOI | MR | Zbl

[19] J. L. Fernández, “Domains with Strong Barrier”, Revista Matematica Iberoamericana, 5 (1989), 47–65 | MR | Zbl

[20] J. L. Fernández and J. M. Rodrí guez, “The exponent of convergence of Riemann surfaces, bass Riemann surfaces”, Ann. Acad. Sci. Fenn. Series A. I. Mathematica, 15 (1990), 165–182 | MR

[21] L. E. Fraenkel, “On regularized distance and related functions”, Proc. Royal Soc. Edinburg, 83a (1979), 115–122 | MR

[22] J. B. Garnett and D. E. Marshall, Harmonic Measure, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[23] W. Gautschi, “Some elementary inequalities relating to the gamma and incomplete gamma function”, J. Math. and Phys., 38 (1959), 77–81 | MR | Zbl

[24] H. Hadwiger, Vorlesungen über Inhalt, Oberfläsche und Isoperimetrie, Springer-Verlag, 1957 | MR

[25] G. H. Hardy, J. E. Littlewood and G. Pólya, Inequalities, Cambridge Univ. Press, Cambridge, 1934

[26] J. A. Hempel, “The Poincaré metric on the twice punctured plane and the theorems of Landau and Schottky”, J. London Math. Soc. (2), 20 (1979), 435–445 | DOI | MR | Zbl

[27] M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof and A. Laptev, “A Geometrical Version of Hardy's Inequality”, J. of Func. Anal., 189 (2002), 539–548 | DOI | MR | Zbl

[28] P. Järvi and M. Vuorinen, “Uniformly perfect sets and quasiregular mappings”, J. London Math. Soc. (2), 54 (1996), 515–529 | MR | Zbl

[29] J. A. Jenkins, “On explicit bounds in Landau's theorem II”, Can. J. Math., 33 (1981), 559–562 | MR | Zbl

[30] P. Koskela and X. Zhong, “Hardy inequality and the boundary size”, Proc. Amer. Math. Soc., 131:4 (2002), 1151–1158 | DOI | MR

[31] J. L. Lewis, “Uniformly fat sets”, Trans. Amer. Math. Soc., 308:1 (1988), 177–196 | DOI | MR | Zbl

[32] M. Marcus, V. J. Mizel and Y. Pinchover, “On the best constant for Hardy's inequality in $\mathbf R^n$”, Trans. Amer. Math. Soc., 350 (1998), 3237–3250 | DOI | MR

[33] T. Matskewich and P. E. Sobolevskii, “The best possible constant in a generalized Hardy's inequality for convex domains in $\mathbf R^n$”, Nonlinear Anal., 28 (1997), 1601–1610 | DOI | MR | Zbl

[34] V. G. Maz'ya, Sobolev Spaces, Springer-Verlag, Berlin / New York, 1985 | MR

[35] V. M. Miklyukov and M. K. Vuorinen, “Hardy's inequality for $W_0^{1,p}$-functions on Riemanni an manifolds”, Proc. Amer. Math. Soc., 127 (1999), 2145–2154 | DOI | MR

[36] E. Mitidieri, “A Rellich type identity and application”, Comm. Partial Differential Equations, 18 (1993), 125–151 | DOI | MR | Zbl

[37] D. S. Mitrinovic, Analytic Inequalities, Springer-Verlag, Berlin, Hedelberg, New York, 1970 | MR | Zbl

[38] V. Opic and A. Kufner, Hardy type inequalities, Pitman Research Notes in Math., 219, Longman, 1990 | MR | Zbl

[39] B. Osgood, “Some properties of $f''/f'$ and the Poincaré metric”, Indiana University Math. J., 31 (1982), 449–461 | DOI | MR | Zbl

[40] Ch. Pommerenke, “Uniformly perfect sets and the Poincaré metric”, Arch. Math., 32 (1979), 192–199 | DOI | MR | Zbl

[41] G. Pólya and G. Szegő, Isoperimetric Inequalities in Mathematical Physics, Princeton Univ. Press, N.J., 1951 | MR | Zbl

[42] F. Rellich, “Halbbeschränkte Differetialoperatoren höherer Ordnung”, Proc. of Int. Congress of Math. 1954, V. III: Groningen Noorthoff, 1956, 243–250 | MR | Zbl

[43] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970 | MR

[44] A. Wannebo, “Hardy Inequalities”, Proc. Amer. Math. Soc., 109:1 (1990), 85–95 | DOI | MR | Zbl