Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2005_20_a4, author = {V. K. Gorbunov and A. Gorobetz and V. Sviridov}, title = {The method of normal splines for linear implicit differential equations of second order}, journal = {Lobachevskii journal of mathematics}, pages = {59--75}, publisher = {mathdoc}, volume = {20}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2005_20_a4/} }
TY - JOUR AU - V. K. Gorbunov AU - A. Gorobetz AU - V. Sviridov TI - The method of normal splines for linear implicit differential equations of second order JO - Lobachevskii journal of mathematics PY - 2005 SP - 59 EP - 75 VL - 20 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2005_20_a4/ LA - en ID - LJM_2005_20_a4 ER -
%0 Journal Article %A V. K. Gorbunov %A A. Gorobetz %A V. Sviridov %T The method of normal splines for linear implicit differential equations of second order %J Lobachevskii journal of mathematics %D 2005 %P 59-75 %V 20 %I mathdoc %U http://geodesic.mathdoc.fr/item/LJM_2005_20_a4/ %G en %F LJM_2005_20_a4
V. K. Gorbunov; A. Gorobetz; V. Sviridov. The method of normal splines for linear implicit differential equations of second order. Lobachevskii journal of mathematics, Tome 20 (2005), pp. 59-75. http://geodesic.mathdoc.fr/item/LJM_2005_20_a4/
[1] Aronszajn N., “Theory of reproducing kernels”, Transactions of the AMS, 68 (1950), 337–404 | DOI | MR | Zbl
[2] Balakrishnan A., Applied Functional Analysis, Springer-Verlag, New York, 1976 | MR | Zbl
[3] Comput. Math. Math. Phys., 42:4 (2002) | MR | Zbl
[4] Doolan E., Miller J., Schilders W., Uniform Numerical Methods for Problems with Initial and Boundary Layers, Bool Press, Dublin, 1980 | MR | Zbl
[5] Comput. Math. Math. Phys., 19:2 (1979) | DOI | MR | Zbl
[6] Comput. Math. Math. Phys., 29:2 (1989) | MR
[7] Gorbunov V. K., Extremum Problems of Measurements Data Processing, Ilim, Frunze, 1990 (Russian)
[8] J. of Computer and Systems Sciences International, 2004, no. 5 | MR
[9] Gorbunov V. K., Lutoshkin I. V., “The parameterization method in optimal control problems and differential-algebraic equations”, J. of Comput. and Applied Math., 185:2 (2006), 377–390 | DOI | MR | Zbl
[10] Comput. Math. Math. Phys., 43:8 (2003), 1099–1108 | MR | Zbl
[11] Gorbunov V. K., Petrischev V. V., Sviridov V. Yu., “Development of the normal spline method for linear integro-differential equations”, Computational Science - ICCS 2003, LNCS 2658, eds. P. Slot et al., Springer, Berlin, 2003, 492–499 | MR
[12] Gorobetz A., “Normal spline-collocation's method for linear differential equations of second order”, Differential Equations and Applications, Proceedings of the International Scientific Conference (26–31 May, 2002), Samara State Architectural - Building Academy, Samara, 2002, 99–104 (Russian)
[13] Hairer E., Wanner G., Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996 | MR | Zbl
[14] Himmelblau D., Applied Nonlinear Programming, McGraw-Hill Book Company, Texas, 1972 | Zbl
[15] Krasnoselsky M. A. et al., Approximate Solution to Operator Equations, Nauka, Moskow, 1969 (Russian) | MR
[16] März R., Weinmüller E., “Solvability of boundary value problems for systems of singular differential-algebraic equations”, J. Math. Anal., SIAM, 24 (1993), 200–215 | DOI | MR | Zbl
[17] Comput. Math. Math. Phys., 42 (2002) | MR | Zbl
[18] Comput. Math. Math. Phys., 36 (1996)
[19] Sobolev S. L., Applications of Functional Analysis to Mathematical Physics, Amer. Math. Soc., Providence RI, 1963 | MR | Zbl
[20] Sviridov V. Yu., “Grid optimization in normal spline's method for integro-differential equations”, Proceedings of the Middle Volga Mathematical Society, vol. 3-4, No 1, SVMO, Saransk, 2002, 236–245 (Russian)