A new subclass of quasi-convex functions with respect to $k$-symmetric points
Lobachevskii journal of mathematics, Tome 19 (2005), pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we introduce a new subclass $\mathcal C_s^{(k)}(\alpha,\beta)$ of quasi-convex functions with respect to $k$-symmetric points. The integral representation and several coefficient inequalities of functions belonging to this class are obtained.
Keywords: quasi-convex functions, $k$-symmetric points.
Mots-clés : subordination
@article{LJM_2005_19_a3,
     author = {Zh.-G. Wang},
     title = {A new subclass of quasi-convex functions with respect to $k$-symmetric points},
     journal = {Lobachevskii journal of mathematics},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {19},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_19_a3/}
}
TY  - JOUR
AU  - Zh.-G. Wang
TI  - A new subclass of quasi-convex functions with respect to $k$-symmetric points
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 41
EP  - 50
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_19_a3/
LA  - en
ID  - LJM_2005_19_a3
ER  - 
%0 Journal Article
%A Zh.-G. Wang
%T A new subclass of quasi-convex functions with respect to $k$-symmetric points
%J Lobachevskii journal of mathematics
%D 2005
%P 41-50
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_19_a3/
%G en
%F LJM_2005_19_a3
Zh.-G. Wang. A new subclass of quasi-convex functions with respect to $k$-symmetric points. Lobachevskii journal of mathematics, Tome 19 (2005), pp. 41-50. http://geodesic.mathdoc.fr/item/LJM_2005_19_a3/

[1] P. L. Duren, Univalent Functions, Springer-Verlag, New York, 1983 | MR | Zbl

[2] H. M. Srivastava and S. Owa (Editors), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992 | MR

[3] S. Owa et al., “Close-to-convexity, starlikeness, and convexity of certain analytic functions”, Appl. Math. Lett., 15 (2002), 63–69 | DOI | MR | Zbl

[4] K. I. Noor, “On quasi-convex functions and related topics”, Internat. J. Math. Math. Sci., 10 (1987), 241–258 | DOI | MR | Zbl

[5] C. Pommerenke, Univalent Functions, Vandenhoeck and Ruprecht, Göttingen, 1975 | MR | Zbl

[6] K. Sakaguchi, “On certain univalent mapping”, J. Math. Soc. Japan, 11 (1959), 72–75 | MR | Zbl

[7] J. Stankiewicz, “Some remarks on functions starlike with respect to symmertic points”, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 19 (1970), 53–59 | MR

[8] J. Thangamani, “On starlike functions with respect to symmetric points”, Indian J. Pure Appl. Math., 11:3 (1980), 392–405 | MR | Zbl

[9] H. Silverman and E. M. Silvia, “Subclasses of starlike functions subordinate to convex functions”, Canad. J. Math., 37:1 (1985), 48–61 | MR | Zbl

[10] R. Parvatham and S. Radha, “On $\alpha$-starlike and $\alpha$-close-to-convex functions with respect to $n$-symmetric points”, Indian J. Pure Appl. Math., 17 (1986), 1114–1122 | MR | Zbl

[11] T. N. Shanmugam, “Convolution and differential subordination”, Internat. J. Math. Math. Sci., 12:2 (1989), 333–340 | DOI | MR | Zbl

[12] J. Sokól et al., “On some subclass of starlike functions with respect to symmetric points”, Zeszyty Nauk. Politech. Rzeszowskiej Mat. Fiz., 12 (1991), 65–73 | MR | Zbl

[13] V. Ravichandran, “Starlike and convex functions with respect to conjugate points”, Acta Math. Acad. Paed. Nyíregyháziensis, 20 (2004), 31–37 | MR | Zbl

[14] T. V. Sudharsan et al., “On functions starlike with respect to symmetric and conjugate points”, Taiwanese J. Math., 2:1 (1998), 57–68 | MR | Zbl