Quivers, vector bundles and coverings of smooth curves
Lobachevskii journal of mathematics, Tome 19 (2005), pp. 3-12

Voir la notice de l'article provenant de la source Math-Net.Ru

Fix a finite quiver $Q$ and consider quiver-bundles on smooth and connected projective curves. Let $f\colon X\to Y$ be a degree $m$ morphism between such curves and $\tilde E$ a quiver bundle on $Y$. We prove that $\tilde E$ is semistable (resp. polystable) if and only if $f^\ast (\tilde E)$ is semistable. Then we construct many stable quiver-bundles on bielliptic curves.
Keywords: holomorphic triples on curves, decorated vector bundle, vector bundles on curves, stable vector bundles, quiver
Mots-clés : bielliptic curve.
@article{LJM_2005_19_a0,
     author = {E. Ballico},
     title = {Quivers, vector bundles and coverings of smooth curves},
     journal = {Lobachevskii journal of mathematics},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {19},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_19_a0/}
}
TY  - JOUR
AU  - E. Ballico
TI  - Quivers, vector bundles and coverings of smooth curves
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 3
EP  - 12
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_19_a0/
LA  - en
ID  - LJM_2005_19_a0
ER  - 
%0 Journal Article
%A E. Ballico
%T Quivers, vector bundles and coverings of smooth curves
%J Lobachevskii journal of mathematics
%D 2005
%P 3-12
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_19_a0/
%G en
%F LJM_2005_19_a0
E. Ballico. Quivers, vector bundles and coverings of smooth curves. Lobachevskii journal of mathematics, Tome 19 (2005), pp. 3-12. http://geodesic.mathdoc.fr/item/LJM_2005_19_a0/