Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2005_19_a0, author = {E. Ballico}, title = {Quivers, vector bundles and coverings of smooth curves}, journal = {Lobachevskii journal of mathematics}, pages = {3--12}, publisher = {mathdoc}, volume = {19}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2005_19_a0/} }
E. Ballico. Quivers, vector bundles and coverings of smooth curves. Lobachevskii journal of mathematics, Tome 19 (2005), pp. 3-12. http://geodesic.mathdoc.fr/item/LJM_2005_19_a0/
[1] L. Álvarez-Cónsul and O. Garcia-Prada, “Dimensional reduction. $\mathrm{SL}(2,\mathbb C)$-equivariant bundles and stable holomorphic chains”, Internat. J. Math., 12:2 (2001), 159–201 | DOI | MR | Zbl
[2] M. Atiyah, “Vector bundles over an elliptic curve”, Proc. London Math. Soc. (3), 7 (1957), 414–452 | DOI | MR | Zbl
[3] E. Ballico, “Brill-Noether theory for vector bundles on projective curves”, Math. Proc. Camb. Philos. Soc., 128 (1998), 483–499 | DOI | MR
[4] E. Ballico and B. Russo, “Exact sequences of semistable vector bundles on algebraic curves”, Bull. London Math. Soc., 32:2 (2000), 537–546 | DOI | MR | Zbl
[5] S. B. Bradlow and O. Garcia-Prada, “Stable triples, equivariant bundles and dimensional reduction”, Math. Ann., 304:2 (1996), 225–252 | DOI | MR | Zbl
[6] P. A. Gothen and A. D. King, “Homological algebra of twisted quiver bundles”, J. London Math. Soc., 71 (2005), 85–99 | DOI | MR | Zbl
[7] D. Hyeon, “Direct images of stable triples”, Internat. J. Math., 11:9 (2000), 1231–1243 | DOI | MR | Zbl
[8] D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, Friedr. Vieweg Sohn, Braunschweig/Wiesbaden, 1997 | MR
[9] M. Maruyama, “The theorem of Grauert-Mülich-Spindler”, Math. Ann., 255 (1981), 317–333 | DOI | MR | Zbl
[10] V. Mercat, “Clifford's theorem and higher rank vector bundles”, Internat. J. Math., 13:7 (2002), 785–796 | DOI | MR | Zbl
[11] A. Schmitt, “A universal construction for moduli problems of decorated vector bundles over curves”, Transform. Group, 182:2 (2003), 201–210 | Zbl
[12] A. Schmitt, “Moduli problems of sheaves associated with oriented trees”, Algebr. Represent. Theory, 6:1 (2003), 1–32 | DOI | MR | Zbl
[13] A. W. Schmitt, “Global boundedness for decorated sheaves”, Int. Math. Res. Not., 2004, no. 68, 3637–3671 | DOI | MR | Zbl
[14] A. W. Schmitt, “Moduli for decorated tuples of sheaves and representation spaces for quivers”, Proc. Indian Acad. Sci. Math. Sci., 115:1 (2005), 15–49 | DOI | MR | Zbl