Quivers, vector bundles and coverings of smooth curves
Lobachevskii journal of mathematics, Tome 19 (2005), pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fix a finite quiver $Q$ and consider quiver-bundles on smooth and connected projective curves. Let $f\colon X\to Y$ be a degree $m$ morphism between such curves and $\tilde E$ a quiver bundle on $Y$. We prove that $\tilde E$ is semistable (resp. polystable) if and only if $f^\ast (\tilde E)$ is semistable. Then we construct many stable quiver-bundles on bielliptic curves.
Keywords: holomorphic triples on curves, decorated vector bundle, vector bundles on curves, stable vector bundles, quiver
Mots-clés : bielliptic curve.
@article{LJM_2005_19_a0,
     author = {E. Ballico},
     title = {Quivers, vector bundles and coverings of smooth curves},
     journal = {Lobachevskii journal of mathematics},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {19},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_19_a0/}
}
TY  - JOUR
AU  - E. Ballico
TI  - Quivers, vector bundles and coverings of smooth curves
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 3
EP  - 12
VL  - 19
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_19_a0/
LA  - en
ID  - LJM_2005_19_a0
ER  - 
%0 Journal Article
%A E. Ballico
%T Quivers, vector bundles and coverings of smooth curves
%J Lobachevskii journal of mathematics
%D 2005
%P 3-12
%V 19
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_19_a0/
%G en
%F LJM_2005_19_a0
E. Ballico. Quivers, vector bundles and coverings of smooth curves. Lobachevskii journal of mathematics, Tome 19 (2005), pp. 3-12. http://geodesic.mathdoc.fr/item/LJM_2005_19_a0/

[1] L. Álvarez-Cónsul and O. Garcia-Prada, “Dimensional reduction. $\mathrm{SL}(2,\mathbb C)$-equivariant bundles and stable holomorphic chains”, Internat. J. Math., 12:2 (2001), 159–201 | DOI | MR | Zbl

[2] M. Atiyah, “Vector bundles over an elliptic curve”, Proc. London Math. Soc. (3), 7 (1957), 414–452 | DOI | MR | Zbl

[3] E. Ballico, “Brill-Noether theory for vector bundles on projective curves”, Math. Proc. Camb. Philos. Soc., 128 (1998), 483–499 | DOI | MR

[4] E. Ballico and B. Russo, “Exact sequences of semistable vector bundles on algebraic curves”, Bull. London Math. Soc., 32:2 (2000), 537–546 | DOI | MR | Zbl

[5] S. B. Bradlow and O. Garcia-Prada, “Stable triples, equivariant bundles and dimensional reduction”, Math. Ann., 304:2 (1996), 225–252 | DOI | MR | Zbl

[6] P. A. Gothen and A. D. King, “Homological algebra of twisted quiver bundles”, J. London Math. Soc., 71 (2005), 85–99 | DOI | MR | Zbl

[7] D. Hyeon, “Direct images of stable triples”, Internat. J. Math., 11:9 (2000), 1231–1243 | DOI | MR | Zbl

[8] D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, Friedr. Vieweg Sohn, Braunschweig/Wiesbaden, 1997 | MR

[9] M. Maruyama, “The theorem of Grauert-Mülich-Spindler”, Math. Ann., 255 (1981), 317–333 | DOI | MR | Zbl

[10] V. Mercat, “Clifford's theorem and higher rank vector bundles”, Internat. J. Math., 13:7 (2002), 785–796 | DOI | MR | Zbl

[11] A. Schmitt, “A universal construction for moduli problems of decorated vector bundles over curves”, Transform. Group, 182:2 (2003), 201–210 | Zbl

[12] A. Schmitt, “Moduli problems of sheaves associated with oriented trees”, Algebr. Represent. Theory, 6:1 (2003), 1–32 | DOI | MR | Zbl

[13] A. W. Schmitt, “Global boundedness for decorated sheaves”, Int. Math. Res. Not., 2004, no. 68, 3637–3671 | DOI | MR | Zbl

[14] A. W. Schmitt, “Moduli for decorated tuples of sheaves and representation spaces for quivers”, Proc. Indian Acad. Sci. Math. Sci., 115:1 (2005), 15–49 | DOI | MR | Zbl