Spectral properties of the adjoint operator and applications
Lobachevskii journal of mathematics, Tome 18 (2005), pp. 33-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present some spectral properties of the adjoint operator corresponding to an admissible dilatation vector field and its perturbations. Next, we apply these results via the Nash–Moser function inverse theorem to show that the group $G$ of diffeomorphisms on the Euclidean space $R^n$ which are 1-time flat, close to the identity and of small support acts transitively on the affine space of appropriate perturbations of the dilation vector field $X_o$.
@article{LJM_2005_18_a2,
     author = {M. Benalili and A. Lansari},
     title = {Spectral properties of the adjoint operator and applications},
     journal = {Lobachevskii journal of mathematics},
     pages = {33--51},
     publisher = {mathdoc},
     volume = {18},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_18_a2/}
}
TY  - JOUR
AU  - M. Benalili
AU  - A. Lansari
TI  - Spectral properties of the adjoint operator and applications
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 33
EP  - 51
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_18_a2/
LA  - en
ID  - LJM_2005_18_a2
ER  - 
%0 Journal Article
%A M. Benalili
%A A. Lansari
%T Spectral properties of the adjoint operator and applications
%J Lobachevskii journal of mathematics
%D 2005
%P 33-51
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_18_a2/
%G en
%F LJM_2005_18_a2
M. Benalili; A. Lansari. Spectral properties of the adjoint operator and applications. Lobachevskii journal of mathematics, Tome 18 (2005), pp. 33-51. http://geodesic.mathdoc.fr/item/LJM_2005_18_a2/

[1] Benalili, M., “Fibrés principaux $\Gamma$-naturels”, Demonst. math., 25:4 (1992), 905–925 | MR | Zbl

[2] Grabowski, J., “Derivative of the exponential mapping for infinite dimensional Lie groups”, Annals Global. Geom., 11 (1993), 213–220 | MR | Zbl

[3] Hamilton, R. S., “The inverse function theorem of Nash and Moser”, Bull. Amer. Math. Soc., 7 (1982), 65–222 | DOI | MR | Zbl

[4] Lansari A., Stabilité globale d'ordre supérieur, article in preparation

[5] Zajtz, A., “Calculus of flows on convenient manifolds”, Arch. Math. (Brno), 32:4 (1996), 355–372 | MR | Zbl