On innerness of derivations on $\mathcal{S(H)}$
Lobachevskii journal of mathematics, Tome 18 (2005), pp. 21-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider general bounded derivations on the Banach algebra of Hilbert–Schmidt operators on an underlying complex infinite dimensional separable Hilbert space $\mathcal H$. Their structure is described by means of unique infinite matrices. Certain classes of derivations are identified together in such a way that they correspond to a unique matrix derivation. In particular, Hadamard derivations, the action of general derivations on Hilbert–Schmidt and nuclear operators and questions about innerness are considered.
Keywords: Hilbert–Schmidt and nuclear operator, Nearly-inner matrices, Hadamard products.
@article{LJM_2005_18_a1,
     author = {A. L. Barrenechea and C. C. Pe\~na},
     title = {On innerness of derivations on $\mathcal{S(H)}$},
     journal = {Lobachevskii journal of mathematics},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {18},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_18_a1/}
}
TY  - JOUR
AU  - A. L. Barrenechea
AU  - C. C. Peña
TI  - On innerness of derivations on $\mathcal{S(H)}$
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 21
EP  - 32
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_18_a1/
LA  - en
ID  - LJM_2005_18_a1
ER  - 
%0 Journal Article
%A A. L. Barrenechea
%A C. C. Peña
%T On innerness of derivations on $\mathcal{S(H)}$
%J Lobachevskii journal of mathematics
%D 2005
%P 21-32
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_18_a1/
%G en
%F LJM_2005_18_a1
A. L. Barrenechea; C. C. Peña. On innerness of derivations on $\mathcal{S(H)}$. Lobachevskii journal of mathematics, Tome 18 (2005), pp. 21-32. http://geodesic.mathdoc.fr/item/LJM_2005_18_a1/

[1] Barrenechea, A. L., Peña, C. C., “Some observations concerning to the non existence of bounded differentials on weighted algebras”, Acta Math. Acad. Paedagogicae Níregyháziensis. Hungary, 19:2 (2003), 215–219 | MR | Zbl

[2] Barrenechea, A. L., Peña, C. C., “Examples of bounded derivations on some none algebras”, Actas del VII Congreso Dr. A. Monteiro, 2004, 23–25 | MR

[3] Barrenechea, A. L., Peña, C. C., “On derivations over rings of triangular matrices”, Bull. Cl. Sci. Math. Nat. Sci. Math., 2005, no. 30, 77–84 | MR

[4] Barrenechea, A. L., Peña, C. C., “Some remarks about bounded derivations on the Hilbert space of square summable matrices”, Mat. Vesnik, 57:3–4 (2005), 79–85 | MR | Zbl

[5] Calkin, W. J., “Two-sided ideals and congruences in the ring of bounded operators in Hilbert space”, Ann. Math., 42 (1941), 839–873 | DOI | MR | Zbl

[6] Dieudonné, J., Treatyse on analysis, Volume 2, Acad. Press Inc., London, 1976 | MR | Zbl

[7] Gel'fand, I. M., Vilenkin, N., Generalized Functions, Volume 4, Academic Press, USA, 1964 | MR

[8] Kadison, R. V., Ringrose, J. R., Fundamentals of the theory of operator algebras, Volumes 1 and 2, Graduate Studies in Math., 15/16, AMS, 1997 | MR | Zbl

[9] Peña, C., “Sobre análisis funcional, variable compleja, topología, álgebra y teoría de la medida”, Publicaciones Electrónicas de la Sociedad Matemática Mejicana, Serie Textos, 3, Méjico. Copyright (C), (2003). Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA02111-1307, USA, (), 1–337 http://www.smm.org.mx/SMMP | MR

[10] Sakai, S, “Derivations on simple C$^\ast$ algebras”, J. Funct. Anal., 2 (1968), 202–206 | DOI | MR | Zbl

[11] Sakai, S., “Derivations on simple C$^\ast$ algebras, II”, Bull. Soc. Math. France, 99 (1971), 259–263 | MR | Zbl