On innerness of derivations on $\mathcal{S(H)}$
Lobachevskii journal of mathematics, Tome 18 (2005), pp. 21-32

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider general bounded derivations on the Banach algebra of Hilbert–Schmidt operators on an underlying complex infinite dimensional separable Hilbert space $\mathcal H$. Their structure is described by means of unique infinite matrices. Certain classes of derivations are identified together in such a way that they correspond to a unique matrix derivation. In particular, Hadamard derivations, the action of general derivations on Hilbert–Schmidt and nuclear operators and questions about innerness are considered.
Keywords: Hilbert–Schmidt and nuclear operator, Nearly-inner matrices, Hadamard products.
@article{LJM_2005_18_a1,
     author = {A. L. Barrenechea and C. C. Pe\~na},
     title = {On innerness of derivations on $\mathcal{S(H)}$},
     journal = {Lobachevskii journal of mathematics},
     pages = {21--32},
     publisher = {mathdoc},
     volume = {18},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_18_a1/}
}
TY  - JOUR
AU  - A. L. Barrenechea
AU  - C. C. Peña
TI  - On innerness of derivations on $\mathcal{S(H)}$
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 21
EP  - 32
VL  - 18
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_18_a1/
LA  - en
ID  - LJM_2005_18_a1
ER  - 
%0 Journal Article
%A A. L. Barrenechea
%A C. C. Peña
%T On innerness of derivations on $\mathcal{S(H)}$
%J Lobachevskii journal of mathematics
%D 2005
%P 21-32
%V 18
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_18_a1/
%G en
%F LJM_2005_18_a1
A. L. Barrenechea; C. C. Peña. On innerness of derivations on $\mathcal{S(H)}$. Lobachevskii journal of mathematics, Tome 18 (2005), pp. 21-32. http://geodesic.mathdoc.fr/item/LJM_2005_18_a1/