Poisson structures on Weil bundles
Lobachevskii journal of mathematics, Tome 17 (2005), pp. 231-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we construct complete lifts of covariant and contravariant tensor fields from the smooth manifold $M$ to its Weil bundle $T^{\mathbf A}M$ for the case of a Frobenius Weil algebra $\mathbf A$. For a Poisson manifold $(M,w)$ we show that the complete lift $w^C$ of a Poisson tensor $w$ is again a Poisson tensor on $T^{\mathbf A}M$ and that $w^C$ is a linear combination of some “basic” Poisson structures on $T^{\mathbf A}M$ induced by $w$. Finally, we introduce the notion of a weakly symmetric Frobenius Weil algebra $\mathbf A$ and we compute the modular class of $(T^{\mathbf A}M,w^C)$ for such algebras.
Keywords: modular class, Weil functor.
Mots-clés : Poisson structure, Weil algebra
@article{LJM_2005_17_a8,
     author = {V. V. Shurygin (Jr.)},
     title = {Poisson structures on {Weil} bundles},
     journal = {Lobachevskii journal of mathematics},
     pages = {231--258},
     publisher = {mathdoc},
     volume = {17},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_17_a8/}
}
TY  - JOUR
AU  - V. V. Shurygin (Jr.)
TI  - Poisson structures on Weil bundles
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 231
EP  - 258
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_17_a8/
LA  - en
ID  - LJM_2005_17_a8
ER  - 
%0 Journal Article
%A V. V. Shurygin (Jr.)
%T Poisson structures on Weil bundles
%J Lobachevskii journal of mathematics
%D 2005
%P 231-258
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_17_a8/
%G en
%F LJM_2005_17_a8
V. V. Shurygin (Jr.). Poisson structures on Weil bundles. Lobachevskii journal of mathematics, Tome 17 (2005), pp. 231-258. http://geodesic.mathdoc.fr/item/LJM_2005_17_a8/

[1] T. J. Courant, “Dirac manifolds”, Trans. Amer. Math. Soc., 319 (1990), 631–661 | DOI | MR | Zbl

[2] C. W. Curtis, I. Reiner, Representation theory of finite groups and associative algebras, John Wiley Sons Ltd., New York, 1988, 689 pp. | MR | Zbl

[3] A. Gammella, “An approach to the tangential Poisson cohomology based on examples in duals of Lie algebras”, Pacific J. Math., 203:2 (2002), 283–319 | MR

[4] J. Grabovski, P. Urbanski, “Tangent lifts of Poisson and related structures”, J. Phys. A, 28 (1995), 73–88 | DOI | MR

[5] I. Kolář, P. W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer, 1993, 434 pp. | MR

[6] Y. Kosmann-Schwarzbach, “Modular vector fields and Batalin-Vilkovisky algebras”, Poisson Geometry, Banach Center Publications, 51, eds. I. Grabovski, P. Urbanski, 2000, 109–129 | MR | Zbl

[7] J.-L. Koszul, “Crochet de Schouten-Nijenhuis et cohomologie”, Elie Cartan et les Math. d'Aujour d'Hui, Astérisque, hors-série, 1985, 257–271 | MR | Zbl

[8] G. I. Kruchkovich, “Hypercomplex structures on manifolds. I”, Tr. Semin. Vektorn. Tenzorn. Anal., 18, 1977, 174–201 (Russian) | MR

[9] A. Lichnerowicz, “Les variétés de Poisson et leurs algèbres de Lie associées”, J. Diff. Geom., 12 (1977), 253–300 | MR | Zbl

[10] P. W. Michor, “Remarks on the Schouten-Nijenhuis bracket”, Suppl. Rendiconti del Circolo Matematico di Palermo, Serie II, 16 (1987), 207–215 | MR | Zbl

[11] G. Mitric, I. Vaisman, “Poisson structures on tangent bundles”, Diff. Geom. and Appl., 18 (2003), 207–228 | DOI | MR | Zbl

[12] R. S. Pierce, Associative algebras, Grad. Texts in Math., 88, Springer, 1982, 436 pp. | MR | Zbl

[13] M. M. Postnikov, Lectures in geometry. Semester III: Smooth manifolds, Textbook (Lektsii po geometrii. Semestr. III. Gladkie mnogoobraziya. Uchebnoe posobie), Izdatel'stvo “Nauka”, Moskva, 1987, 480 pp. (Russian) | MR | Zbl

[14] A. C. da Silva, A. Weinstein, Geometric Models for Noncommutative Algebras, Berkeley Lecture Notes, 10, 2000, 184 pp. | MR

[15] A. P. Shirokov, “The geometry of tangent bundles and spaces over algebras”, Itogi Nauki Tekh., Ser. Probl. Geom., 12, 1981, 61–95 (Russian) | MR | Zbl

[16] Shurygin V. V., “The structure of smooth mappings over Weil algebras and the category of manifolds over algebras”, Lobachevskii J. of Math., 5 (1999), 29–55 | MR | Zbl

[17] I. Vaisman, “Remarks on the Lichnerovicz-Poisson cohomology”, Ann. Inst. Fourier Grenoble, 40 (1990), 951–963 | MR | Zbl

[18] I. Vaisman, “Lectures on the Geomery of Poisson Manifolds”, Progress in Math., 118, Birkhäuser, Basel, 1994 | MR | Zbl

[19] V. V. Vishnevsky, A. P. Shirokov, V. V. Shurygin, Spaces over algebras (Prostranstva nad algebrami), Izdatel'stvo Kazanskogo Universiteta, Kazan', 1985, 263 pp. (Russian) | MR

[20] A. Weil, “Théorie des points proches sur les variététes différentiables”, Colloque internat. centre nat. rech. sci., vol. 52, Strasbourg, 1953, 111–117 | MR | Zbl

[21] A. Weinstein, “The modular automorphism group of a Poisson manifold”, J. Geom. Phys., 23 (1997), 379–394 | DOI | MR | Zbl

[22] P. Xu, “Poisson cohomology of regular Poisson manifolds”, Ann. Inst. Fourier Grenoble, 42 (1992), 967–988 | MR | Zbl

[23] K. Yano, S. Ishihara, Tangent and Cotangent Bundles, M. Dekker, New York, 1973 | MR | Zbl