Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2005_17_a6, author = {C. V. Jensen}, title = {Linear {ODEs} and $\mathcal D$-modules, solving and decomposing equations using symmetry methods}, journal = {Lobachevskii journal of mathematics}, pages = {149--212}, publisher = {mathdoc}, volume = {17}, year = {2005}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2005_17_a6/} }
TY - JOUR AU - C. V. Jensen TI - Linear ODEs and $\mathcal D$-modules, solving and decomposing equations using symmetry methods JO - Lobachevskii journal of mathematics PY - 2005 SP - 149 EP - 212 VL - 17 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2005_17_a6/ LA - en ID - LJM_2005_17_a6 ER -
C. V. Jensen. Linear ODEs and $\mathcal D$-modules, solving and decomposing equations using symmetry methods. Lobachevskii journal of mathematics, Tome 17 (2005), pp. 149-212. http://geodesic.mathdoc.fr/item/LJM_2005_17_a6/
[1] J. G. F. Belinfante and B. Kolman, A survey of Lie groups and Lie algebras with applications and computational methods, Classics in applied mathematics, 2, SIAM, Philadelphia, 1972, ISBN 0-89871-243-2 | MR
[2] A. Borel, Algebraic $\mathcal D$-modules, Academic Press, 1987, ISBN 0-12-117740-8 | MR
[3] S. V. Duzhin and V. V. Lychagin, “Symmetries of distributions and quadrature of ordinary differential equations”, Acta Applicandae Mathematicae, 24 (1991), 29–57 | MR | Zbl
[4] W. Fulton and J. Harris, Representation Theory. A First Course, Graduate Texts in Mathematics, 129, Springer, New York, 1991, ISBN 0-387-97495-4 | MR | Zbl
[5] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York, 1972, ISBN 0-387-90052-7 | MR | Zbl
[6] C. V. Jensen, “Geometric structures on solution spaces of integrable distributions”, Differential Geometry and Its Applications, Proceedings of 8ICDGA, Silesian University, Opava, 2001, 175–185 | MR | Zbl
[7] C. V. Jensen, “Decomposition of ODEs with an $\mathfrak{sl}_2$-algebra of symmetries”, Global analysis and applied mathematics, Proceedings IWGA (2004 eds K. Tas, D. Baleanu, D. Krupka, and O. Krupkova), AIP conference proceedings, 729, New York, 2004, 193–200 ; href{http://proceedings.aip.org/proceedings} {http://proceedings.aip.org/proceedings} | MR
[8] I. Kaplansky, Differential Algebra, An Introduction to, 2nd edition, Hermann, Paris, 1976, ISBN 2-7056-1251-3 | MR
[9] E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press, New York, 1973 | MR | Zbl
[10] I. S. Krasil'shchik, V. V. Lychagin, and A. M. Vinogradov, The Geometry of Jet spaces and nonlinear Partial Differential Equations, Gordon and Breach Science Publishers, 1986, ISBN 2-88124-051-8 | MR
[11] A. Kushner, V. V. Lychagin, and V. Roubtsov, Contact geometry and non-linear differential equations, Cambridge University Press, 2005
[12] M. Sato, “$\mathcal D$-modules and nonlinear systems”, Adv. Stud. Pure Mathematics, 19 (1989), 417–434 | MR | Zbl
[13] J.-P. Serre, Lie Algebras and Lie Groups, Lectures at Harvard University, 1964, Springer, Berlin, 1992, ISBN 0-387-55008-9 | MR
[14] M. van der Put, “Galois theory of differential equations, algebraic groups and lie algebras”, J. Symbolic Computation, 28 (1999), 441–473, Article No. jsco.1999.0310 ; Available online at http://www.idealibrary.com | DOI | MR
[15] M. van der Put and M. Singer, Galois theory of linear differential equations, Springer, Berlin, 2003, ISBN 3-540-44228-6 | MR