Linear ODEs and $\mathcal D$-modules, solving and decomposing equations using symmetry methods
Lobachevskii journal of mathematics, Tome 17 (2005), pp. 149-212.

Voir la notice de l'article provenant de la source Math-Net.Ru

This text investigates homogeneous systems of linear ODEs with smooth coefficients. Associating to an equation a differential module proves that these equations form a monoidal category with respect to the tensor product of modules, and objects in this category include homomorphisms, symmetric and exterior powers as well as dual equations. Viewing symmetries as endomorphisms of the $\mathcal D$-modules enables direct application of results from the theory of representations of Lie algebras. In particular we find decomposition and solution methods of equations with semisimple symmetry algebras, as well as solvable symmetry algebras. Sufficient conditions for equations to be solved by algebraic manipulations and quadrature are given, and unlike most previous results, there is no requirement on the symmetry algebras of having dimension equal to the order of the equations, in some cases even a single symmetry is sufficient to solve an equation.
Keywords: linear ordinary differential equations, symmetry algebras, representation theory, symmetry operators.
@article{LJM_2005_17_a6,
     author = {C. V. Jensen},
     title = {Linear {ODEs} and $\mathcal D$-modules, solving and decomposing equations using symmetry methods},
     journal = {Lobachevskii journal of mathematics},
     pages = {149--212},
     publisher = {mathdoc},
     volume = {17},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_17_a6/}
}
TY  - JOUR
AU  - C. V. Jensen
TI  - Linear ODEs and $\mathcal D$-modules, solving and decomposing equations using symmetry methods
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 149
EP  - 212
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_17_a6/
LA  - en
ID  - LJM_2005_17_a6
ER  - 
%0 Journal Article
%A C. V. Jensen
%T Linear ODEs and $\mathcal D$-modules, solving and decomposing equations using symmetry methods
%J Lobachevskii journal of mathematics
%D 2005
%P 149-212
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_17_a6/
%G en
%F LJM_2005_17_a6
C. V. Jensen. Linear ODEs and $\mathcal D$-modules, solving and decomposing equations using symmetry methods. Lobachevskii journal of mathematics, Tome 17 (2005), pp. 149-212. http://geodesic.mathdoc.fr/item/LJM_2005_17_a6/

[1] J. G. F. Belinfante and B. Kolman, A survey of Lie groups and Lie algebras with applications and computational methods, Classics in applied mathematics, 2, SIAM, Philadelphia, 1972, ISBN 0-89871-243-2 | MR

[2] A. Borel, Algebraic $\mathcal D$-modules, Academic Press, 1987, ISBN 0-12-117740-8 | MR

[3] S. V. Duzhin and V. V. Lychagin, “Symmetries of distributions and quadrature of ordinary differential equations”, Acta Applicandae Mathematicae, 24 (1991), 29–57 | MR | Zbl

[4] W. Fulton and J. Harris, Representation Theory. A First Course, Graduate Texts in Mathematics, 129, Springer, New York, 1991, ISBN 0-387-97495-4 | MR | Zbl

[5] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York, 1972, ISBN 0-387-90052-7 | MR | Zbl

[6] C. V. Jensen, “Geometric structures on solution spaces of integrable distributions”, Differential Geometry and Its Applications, Proceedings of 8ICDGA, Silesian University, Opava, 2001, 175–185 | MR | Zbl

[7] C. V. Jensen, “Decomposition of ODEs with an $\mathfrak{sl}_2$-algebra of symmetries”, Global analysis and applied mathematics, Proceedings IWGA (2004 eds K. Tas, D. Baleanu, D. Krupka, and O. Krupkova), AIP conference proceedings, 729, New York, 2004, 193–200 ; href{http://proceedings.aip.org/proceedings} {http://proceedings.aip.org/proceedings} | MR

[8] I. Kaplansky, Differential Algebra, An Introduction to, 2nd edition, Hermann, Paris, 1976, ISBN 2-7056-1251-3 | MR

[9] E. R. Kolchin, Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press, New York, 1973 | MR | Zbl

[10] I. S. Krasil'shchik, V. V. Lychagin, and A. M. Vinogradov, The Geometry of Jet spaces and nonlinear Partial Differential Equations, Gordon and Breach Science Publishers, 1986, ISBN 2-88124-051-8 | MR

[11] A. Kushner, V. V. Lychagin, and V. Roubtsov, Contact geometry and non-linear differential equations, Cambridge University Press, 2005

[12] M. Sato, “$\mathcal D$-modules and nonlinear systems”, Adv. Stud. Pure Mathematics, 19 (1989), 417–434 | MR | Zbl

[13] J.-P. Serre, Lie Algebras and Lie Groups, Lectures at Harvard University, 1964, Springer, Berlin, 1992, ISBN 0-387-55008-9 | MR

[14] M. van der Put, “Galois theory of differential equations, algebraic groups and lie algebras”, J. Symbolic Computation, 28 (1999), 441–473, Article No. jsco.1999.0310 ; Available online at http://www.idealibrary.com | DOI | MR

[15] M. van der Put and M. Singer, Galois theory of linear differential equations, Springer, Berlin, 2003, ISBN 3-540-44228-6 | MR