Quantizations in a~category of relations
Lobachevskii journal of mathematics, Tome 17 (2005), pp. 61-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develops a categorical theory of relations and use this formulation to define the notion of quantization for relations. Categories of relations are defined in the context of symmetric monoidal categories. They are shown to be symmetric monoidal categories in their own right and are found to be isomorphic to certain categories of $A-A$ bicomodules. Properties of relations are defined in terms of the symmetric monoidal structure. Equivalence relations are shown to be commutative monoids in the category of relations. Quantization in our view is a property of functors between monoidal categories. This notion of quantization induce a deformation of all algebraic structures in the category, in particular the ones defining properties of relations like transitivity and symmetry.
@article{LJM_2005_17_a5,
     author = {P. K. Jakobsen and V. V. Lychagin},
     title = {Quantizations in a~category of relations},
     journal = {Lobachevskii journal of mathematics},
     pages = {61--148},
     publisher = {mathdoc},
     volume = {17},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_17_a5/}
}
TY  - JOUR
AU  - P. K. Jakobsen
AU  - V. V. Lychagin
TI  - Quantizations in a~category of relations
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 61
EP  - 148
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_17_a5/
LA  - en
ID  - LJM_2005_17_a5
ER  - 
%0 Journal Article
%A P. K. Jakobsen
%A V. V. Lychagin
%T Quantizations in a~category of relations
%J Lobachevskii journal of mathematics
%D 2005
%P 61-148
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_17_a5/
%G en
%F LJM_2005_17_a5
P. K. Jakobsen; V. V. Lychagin. Quantizations in a~category of relations. Lobachevskii journal of mathematics, Tome 17 (2005), pp. 61-148. http://geodesic.mathdoc.fr/item/LJM_2005_17_a5/

[1] Fronsdal C., Lichnerowicz A., Bayen F., Flato M., and Sternheimer D. “Deformation theory and quantization, II”, Ann. Phys. (NY), 111 (1978), 61–110, 111–151 | DOI | MR | Zbl

[2] Louise De Broglie, “Ondes et quanta”, Comptes rendus de l'Academie des Sciences, 177 (1923), 507–510

[3] Louise De Broglie, Recherches sur la Theorie Des Quanta, PhD thesis, University of Paris, 1924

[4] Louise De Broglie, “Phase wave of louise deBroglie”, A. J. Phys., 40:9 (1972), 1315–1320 | DOI

[5] Albert Einstein, “Zur theorie der lichterzeugung and lichtabsorption”, Annalen der Physik, 1906, 1

[6] W. Heisenberg, “Uber quantentheoretische umdentung kinematischer und mechanischer beziehungen”, Zeitschrift fur physik, 33 (1925), 879–893 | DOI | Zbl

[7] Woodhouse N. M. J., Geometric Quantization, 2 edition, Oxford Mathematical Monographs, Oxford Science Publications, 1992 | MR | Zbl

[8] Saunders Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer, 1998 | MR | Zbl

[9] V. V. Lychagin, “Colour calculus and colour quantizations. Geometric and algebraic structures in differential equations”, Acta Appl. Math., 41:1–3 (1995), 193–226 | DOI | MR | Zbl

[10] V. V. Lychagin, “Calculus and quantizations over hopf algebras”, Acta Appl. Math., 51:3 (1998), 303–352 | DOI | MR | Zbl

[11] V. V. Lychagin, “Quantum mechanics on manifolds. Geometrical aspects of nonlineardifferential equations”, Acta Appl. Math., 56:2–3 (1999), 231–251 | DOI | MR | Zbl

[12] M. Planck, “Zur theorie des gesetzes der energieverteilung im normalspectrum”, Verhandl. Dtsch. phys. Ges., 2:237 (1900)

[13] Jakub Rembielinski, editor, Deformation Quantization: Twenty Years After, Amer. Inst. Phys., Woodbury, Ny, 1998 | MR

[14] B. L. Van Der Waerden, Sources of Quantum Mechanics, Dover, 1967