On a class of non linear differential operators of first order with singular point
Lobachevskii journal of mathematics, Tome 17 (2005), pp. 25-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of the existence and uniqueness of solutions for partial differential operator of the form $Lu=D_Xu-B(x,u)$ where $X$ is a vector field. The solvability of $L$ may be of some interest since by the Nash–Moser inverse function theorem the equivalence problem in differential geometry can be solved via Lie derivative operator and the later is locally a particular case of $L$. An application to the equivalence of dynamic systems is given.
@article{LJM_2005_17_a2,
     author = {M. Benalili},
     title = {On a class of non linear differential operators of first order with singular point},
     journal = {Lobachevskii journal of mathematics},
     pages = {25--41},
     publisher = {mathdoc},
     volume = {17},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2005_17_a2/}
}
TY  - JOUR
AU  - M. Benalili
TI  - On a class of non linear differential operators of first order with singular point
JO  - Lobachevskii journal of mathematics
PY  - 2005
SP  - 25
EP  - 41
VL  - 17
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2005_17_a2/
LA  - en
ID  - LJM_2005_17_a2
ER  - 
%0 Journal Article
%A M. Benalili
%T On a class of non linear differential operators of first order with singular point
%J Lobachevskii journal of mathematics
%D 2005
%P 25-41
%V 17
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2005_17_a2/
%G en
%F LJM_2005_17_a2
M. Benalili. On a class of non linear differential operators of first order with singular point. Lobachevskii journal of mathematics, Tome 17 (2005), pp. 25-41. http://geodesic.mathdoc.fr/item/LJM_2005_17_a2/

[1] J. Gorowski, A. Zajtz, “On a class of linear differential operators of first order with singularity point”, Prace Matematyczne, 1997, no. 14, 129–140 | MR | Zbl

[2] Nelson, E., Topics in dynamics, I: Flows, Princeton, 1970 | MR

[3] Smale, S., “Differentiable dynamic systems”, Bulletin of the Amer. Math. Soc., 73 (1967), 747–817 | DOI | MR

[4] Wintner, A., “Bounded matrices and linear differential equations”, Amer. J. Math., 79 (1957), 139–151 | DOI | MR | Zbl

[5] Zajtz, A., “Some division theorems for vector fields”, Ann. Pol. Math., 1993, 19–28 | MR | Zbl