Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2004_16_a3, author = {F. Nagasato}, title = {Efficient formula of the colored {Kauffman} brackets}, journal = {Lobachevskii journal of mathematics}, pages = {71--78}, publisher = {mathdoc}, volume = {16}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2004_16_a3/} }
F. Nagasato. Efficient formula of the colored Kauffman brackets. Lobachevskii journal of mathematics, Tome 16 (2004), pp. 71-78. http://geodesic.mathdoc.fr/item/LJM_2004_16_a3/
[B] D. Bullock, “The $(2,\infty)$-skein module of the complement of a $(2,2p+1)$-torus knot”, J. Knot Theory Ramifications, 4 (1995), 619–632 | DOI | MR | Zbl
[BL] D. Bullock and W. LoFaro, The Kauffman bracket skein module of a twist knot exterior, preprint | MR
[FG] C. Frohman and R. Gelca, “Skein modules and the noncommutative torus”, Trans. Amer. Math. Soc., 352 (2000), 4877–4888 | DOI | MR | Zbl
[FGL] C. Frohman, R. Gelca and W. LoFaro, “The A-polynomial from the noncommutative viewpoint”, Trans. Amer. Math. Soc., 354 (2001), 735–747 | DOI | MR
[GL] S. Garoufalidis and T. T. Q. Le, The colored Jones function is q-holonomic, preprint | MR
[G1] R. Gelca, “Noncommutative trigonometry and the A-polynomial of the trefoil”, Math. Proc. Cambridge Phil. Soc., 133 (2002), 311–323 | DOI | MR | Zbl
[G2] R. Gelca, “On the relation between the A-polynomial and the Jones polynomial”, Proc. Amer. Math. Soc., 130 (2001), 1235–1241 | DOI | MR
[HP] J. Hoste and J. Przytycki, “The $(2,\infty)$-skein module of lens spaces; a generalization of the Jones polynomial”, J. Knot Theory Ramifications, 2 (1993), 321–333 | DOI | MR | Zbl
[L] W. B. R. Lickorish, “The skein method for three-manifold invariants”, J. Knot Theory Ramifications, 2 (1993), 171–194 | DOI | MR | Zbl
[N] F. Nagasato, “Computing the A-polynomial using noncommutative methods”, J. Knot Theory Ramifications, 14:6 (2005), 735–749 | DOI | MR | Zbl
[P1] J. Przytycki, “Skein modules of 3-manifolds”, Bull. Pol. Acad. Sci., 39 (1991), 91–100 | MR
[P2] J. Przytycki, “Fundamentals of Kauffman bracket skein module”, Kobe J. Math., 16:1 (1999), 45–66 | MR | Zbl
[S] N. Saveliev, Lectures on the topology of 3-manifolds: an introduction to the Casson invariant, de Gruyter textbook, Walter de Gruyter, Berlin, 1999 | MR | Zbl