Order-types of models of arithmetic and a~connection with arithmetic
Lobachevskii journal of mathematics, Tome 16 (2004), pp. 3-15.

Voir la notice de l'article provenant de la source Math-Net.Ru

First, we study a question we encountered while exploring order-types of models of arithmetic. We prove that if $M\vDash{\rm PA}$ is resplendent and the lower cofinality of $M\setminus\mathbb N$ is uncountable then $(M,)$ is expandable to a model of anyconsistent theory $T\supseteq{\rm PA}$ whose set of Göodel numbers is arithmetic. This leads to the following characterization of Scott sets closed under jump: a Scott set $X$ is closed under jump if and only if $X$ is the set of all sets of natural numbers definable in some recursively saturated model $M\vDash{\rm PA}$ with lcf $(M\setminus\mathbb N)>\omega$. The paper concludes with a generalization of theorems of Kossak, Kotlarski and Kaye on automorphisms moving all nondefinable points: a countable model $M\vDash{\rm PA}$ is arithmetically saturated if and only if there is an automorphism $h\colon M\to M$ moving every nondefinable point and such that for all $x\in M$, $\mathbb N$, we have $h(x)>x$.
Keywords: models of Peano arithmetic, linearly ordered sets, arithmetic saturation, resplendency, automorphisms of models.
@article{LJM_2004_16_a0,
     author = {A. Bovykin},
     title = {Order-types of models of arithmetic and a~connection with arithmetic},
     journal = {Lobachevskii journal of mathematics},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {16},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2004_16_a0/}
}
TY  - JOUR
AU  - A. Bovykin
TI  - Order-types of models of arithmetic and a~connection with arithmetic
JO  - Lobachevskii journal of mathematics
PY  - 2004
SP  - 3
EP  - 15
VL  - 16
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2004_16_a0/
LA  - en
ID  - LJM_2004_16_a0
ER  - 
%0 Journal Article
%A A. Bovykin
%T Order-types of models of arithmetic and a~connection with arithmetic
%J Lobachevskii journal of mathematics
%D 2004
%P 3-15
%V 16
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2004_16_a0/
%G en
%F LJM_2004_16_a0
A. Bovykin. Order-types of models of arithmetic and a~connection with arithmetic. Lobachevskii journal of mathematics, Tome 16 (2004), pp. 3-15. http://geodesic.mathdoc.fr/item/LJM_2004_16_a0/

[1] Bovykin, A. I., On order-types of models of arithmetic, Ph.D. Thesis, University of Birmingham, 2000

[2] Friedman H., “One hundred and two problems in mathematical logic”, Journal of Symbolic Logic, 40 (1975), 113–129 | DOI | MR | Zbl

[3] Automorphisms of First-Order Structures, ed. Kaye and Macpherson, Oxford University Press, 1994 | MR

[4] Kirby, L. A. S. and Paris, J. B., “Initial segments of models of Peano's axioms”, Set Theory and Hierarchy Theory, V. Bierutowice, Poland, 1977 | Zbl

[5] Kaye, R., Kossak, R., Kotlarski, H., “Automorphisms of recursively saturated models of arithmetic”, Annals of Pure and Applied Logic, 55 (1991), 67–91 | DOI | MR | Zbl

[6] Kossak, R., “Exercises in ‘back-and-forth’”, Proceedings of the Nineth Easter Conference on Model Theory, Gosen, 1991

[7] Kossak, R., Schmerl, J., “Arithmetically saturated models of arithmetic”, Notre Dame Journal of Formal Logic, 36 (1995) | MR

[8] Pabion, J. F., “Saturated models of Peano Arithmetic”, Journal of Symbolic Logic, 47 (1982), 625–637 | DOI | MR | Zbl