Some properties of solutions of the pseudo-parabolic equation
Lobachevskii journal of mathematics, Tome 15 (2004), pp. 3-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we discuss properties of solutions for a class of pseudo-parabolic equation. Some results on the asymptotic behavior and monotonicity of support are established.
Keywords: asymptotic behavior, comparison principle.
Mots-clés : pseudo-parabolic equation
@article{LJM_2004_15_a0,
     author = {Ch. Liu},
     title = {Some properties of solutions of the pseudo-parabolic equation},
     journal = {Lobachevskii journal of mathematics},
     pages = {3--10},
     publisher = {mathdoc},
     volume = {15},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2004_15_a0/}
}
TY  - JOUR
AU  - Ch. Liu
TI  - Some properties of solutions of the pseudo-parabolic equation
JO  - Lobachevskii journal of mathematics
PY  - 2004
SP  - 3
EP  - 10
VL  - 15
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2004_15_a0/
LA  - en
ID  - LJM_2004_15_a0
ER  - 
%0 Journal Article
%A Ch. Liu
%T Some properties of solutions of the pseudo-parabolic equation
%J Lobachevskii journal of mathematics
%D 2004
%P 3-10
%V 15
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2004_15_a0/
%G en
%F LJM_2004_15_a0
Ch. Liu. Some properties of solutions of the pseudo-parabolic equation. Lobachevskii journal of mathematics, Tome 15 (2004), pp. 3-10. http://geodesic.mathdoc.fr/item/LJM_2004_15_a0/

[1] G. I. Barwnblatt, Iv. P. Zheltov, and I. N. Kochina, “Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks”, J. Appl. Math. Mech., 24 (1960), 1286–1303 | DOI

[2] B. D. Coleman, R. J. Duffin, and V. J. Mizel, “Instability, uniqueness and nonexistence theorems for the equations, $u_t=u_{xx}-u_{xtx}$ on a strip”, Arch. Rat. Mech. Anal., 19 (1965), 100–116 | DOI | MR | Zbl

[3] E. DiBenedtto and M. Pierre, “On the maximum principle for pseudoparabolic equations”, Indiana Univ. Math. J., 30:6 (1981), 821–854 | DOI | MR

[4] P. J. Chen and M. E. Gurtin, “On a theory of heat conduction involving two temperatures”, Z. Angew. Math. Phys., 19 (1968), 614–627 | DOI | Zbl

[5] T. W. Ting, “A cooling process according to two-temperature theory of heat conduction”, J. Math. Anal. Appl., 45 (1974), 23–31 | DOI | MR | Zbl

[6] E. DiBenedetto and R. E. Showalter, “Implicit decenerate evolution equations and applications”, SIAM J. Math. Anal., 12:5 (1981), 731–751 | DOI | MR | Zbl

[7] A. Novick-Cohen and R. L. Pego, “Stable patterns in a viscous diffusion equation”, Trans. Amer. Math. Soc., 324 (1991), 331–351 | DOI | MR | Zbl

[8] V. R. G. Rao and T. W. Ting, “Solutions of pseudo-heat equation in whole space”, Arch. Rat. Mech. Anal., 49 (1972), 57–78 | DOI | MR | Zbl

[9] R. E. Showalter and T. W. Ting, “Pseudo-parabolic partial differential equations”, SIAM J. Math. Anal., 1 (1970), 1–26 | DOI | MR | Zbl

[10] Liu Changchun, “Weak solutions for a viscous $p$-Laplacian equation”, Electronic Journal of Differential Equations, 63 (2003), 1–11 | MR

[11] Yuan Hongjun, “Extinction and positivity for the evolution $P$-Laplacian equation”, J. Math. Anal. Appl., 196 (1995), 754–763 | DOI | MR | Zbl