Degree one Cohomology for the lie algebras of derivations
Lobachevskii journal of mathematics, Tome 14 (2004), pp. 85-123

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring and $W$ a Lie algebra of its derivations which is an $R$-submodule in the full derivation algebra Der $R$. We consider a class of $W$-modules generalizing the natural representations of the Lie algebras of vector fields in tensor fields of arbitrary type. The main result consists in the determination of the cohomology of those modules in degree 1. Its applications include a description of derivations and the universal central extension for the Lie algebra $W$.
@article{LJM_2004_14_a7,
     author = {S. M. Skryabin},
     title = {Degree one {Cohomology} for the lie algebras of derivations},
     journal = {Lobachevskii journal of mathematics},
     pages = {85--123},
     publisher = {mathdoc},
     volume = {14},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2004_14_a7/}
}
TY  - JOUR
AU  - S. M. Skryabin
TI  - Degree one Cohomology for the lie algebras of derivations
JO  - Lobachevskii journal of mathematics
PY  - 2004
SP  - 85
EP  - 123
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2004_14_a7/
LA  - en
ID  - LJM_2004_14_a7
ER  - 
%0 Journal Article
%A S. M. Skryabin
%T Degree one Cohomology for the lie algebras of derivations
%J Lobachevskii journal of mathematics
%D 2004
%P 85-123
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2004_14_a7/
%G en
%F LJM_2004_14_a7
S. M. Skryabin. Degree one Cohomology for the lie algebras of derivations. Lobachevskii journal of mathematics, Tome 14 (2004), pp. 85-123. http://geodesic.mathdoc.fr/item/LJM_2004_14_a7/