Degree one Cohomology for the lie algebras of derivations
Lobachevskii journal of mathematics, Tome 14 (2004), pp. 85-123.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a commutative ring and $W$ a Lie algebra of its derivations which is an $R$-submodule in the full derivation algebra Der $R$. We consider a class of $W$-modules generalizing the natural representations of the Lie algebras of vector fields in tensor fields of arbitrary type. The main result consists in the determination of the cohomology of those modules in degree 1. Its applications include a description of derivations and the universal central extension for the Lie algebra $W$.
@article{LJM_2004_14_a7,
     author = {S. M. Skryabin},
     title = {Degree one {Cohomology} for the lie algebras of derivations},
     journal = {Lobachevskii journal of mathematics},
     pages = {85--123},
     publisher = {mathdoc},
     volume = {14},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2004_14_a7/}
}
TY  - JOUR
AU  - S. M. Skryabin
TI  - Degree one Cohomology for the lie algebras of derivations
JO  - Lobachevskii journal of mathematics
PY  - 2004
SP  - 85
EP  - 123
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2004_14_a7/
LA  - en
ID  - LJM_2004_14_a7
ER  - 
%0 Journal Article
%A S. M. Skryabin
%T Degree one Cohomology for the lie algebras of derivations
%J Lobachevskii journal of mathematics
%D 2004
%P 85-123
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2004_14_a7/
%G en
%F LJM_2004_14_a7
S. M. Skryabin. Degree one Cohomology for the lie algebras of derivations. Lobachevskii journal of mathematics, Tome 14 (2004), pp. 85-123. http://geodesic.mathdoc.fr/item/LJM_2004_14_a7/

[1] N. Bourbaki, Commutative Algebra, Springer, Berlin, 1989 | MR

[2] A. Campillo, J. Grabowski, G. Müller, “Derivation algebras of toric varieties”, Compos. Math., 116 (1999), 119–132 | DOI | MR | Zbl

[3] S. Chiu, G. Yu. Shen, “Cohomology of graded Lie algebras of Cartan type of characteristic $p$”, Abh. Math. Sem. Univ. Hamburg, 57 (1987), 139–156 | DOI | MR | Zbl

[4] A. S. Dzhumadil'daev, “On the cohomology of modular Lie algebras”, Mat. Sbornik, 119 (1982), 132–149 (in Russian) | MR

[5] A. S. Dzhumadil'daev, “Central extensions of the Zassenhaus algebra and their irreducible representations”, Mat. Sbornik, 126 (1985), 473–489 (in Russian) | MR

[6] D. B. Fuks, Cohomology of infinite dimensional Lie algebras, Consultants Bureau, New York, 1986 | MR

[7] J. Grabowski, “Isomorphisms and ideals of the Lie algebras of vector fields”, Invent. Math., 50 (1978), 13–33 | DOI | MR | Zbl

[8] J. Grabowski, “Derivations of the Lie algebras of analytic vector fields”, Compositio Math., 43 (1981), 239–252 | MR | Zbl

[9] J. Grabowski, “Ideals of the Lie algebras of vector fields revisited”, Rend. Circ. Mat. Palermo, 32 (1993), 89–95 | MR

[10] H. Hauser, G. Müller, “On the Lie algebra $\Theta(X)$ of vector fields on a singularity”, J. Math. Sci. Uni. Tokyo, 1 (1994), 239–250 | MR | Zbl

[11] J. Herz, “Pseudo-algèbre de Lie”, Compt. Rend. Acad. Sci. Paris, 236 (1953), 1935–1937 | MR | Zbl

[12] N. Jacobson, “Classes of restricted Lie algebras of characteristic $p$ II”, Duke Math. J., 10 (1943), 107–121 | DOI | MR | Zbl

[13] D. A. Jordan, “On the ideals of a Lie algebra of derivations”, J. London Math. Soc., 33 (1986), 33–39 | DOI | MR | Zbl

[14] D. Kastler, R. Stora, “Lie-Cartan pairs”, J. Geom. Phys., 2 (1985), 1–31 | DOI | MR | Zbl

[15] A. I. Kostrikin, I. R. Shafarevich, “Graded Lie algebras of finite characteristic”, Izv. Akad. Nauk USSR Ser. Mat., 33 (1969), 251–322 (in Russian) | MR | Zbl

[16] K. Mackenzie, Lie groupoids and Lie algebroids in differential geometry, London Math. Soc. Lecture Note Series, 124, Cambridge Univ. Press, Cambridge, 1987 | MR | Zbl

[17] R. S. Palais, “The cohomology of Lie $d$-rings”, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, 1961, 130–137 | MR

[18] R. Ree, “Note on generalized Witt algebras”, Canad. J. Math., 11 (1959), 345–352 | MR | Zbl

[19] G. S. Rinehart, “Differential forms on general commutative algebras”, Trans. Amer. Math. Soc., 108 (1963), 195–222 | DOI | MR | Zbl

[20] G. Shen, “Graded modules of graded Lie algebras of Cartan type, I. Mixed products of modules”, Scientia Sinica Ser. A, 29 (1986), 570–581 | MR | Zbl

[21] Th. Siebert, “Lie algebras of derivations and affine algebraic geometry over fields of characteristic 0”, Math. Ann., 305 (1996), 271–286 | DOI | MR | Zbl

[22] S. Skryabin, “Regular Lie rings of derivations”, Vestnik Moscov. Univ. Ser. I. Mat. Mekh., 1988, no. 3, 59–62 (in Russian) | MR | Zbl

[23] S. Skryabin, “An algebraic approach to the Lie algebras of Cartan type”, Comm. Algebra, 21 (1993), 1229–1336 | DOI | MR | Zbl

[24] S. Skryabin, “Independent systems of derivations and Lie algebra representations”, Proceedings of the Chebotarev Centennial Conference on Algebra and Analysis (Kazan, 1994), eds. M. M. Arslanov, A. N. Parshin, I. R. Shafarevich, Walter de Gruyter, Berlin, 1996, 115–150 | MR | Zbl

[25] H. Strade, R. Farnsteiner, Modular Lie Algebras and their Representations, Marcel Dekker Textbooks and Monographs, 116, Marcel Dekker, New York, 1988 | MR | Zbl

[26] F. Takens, “Derivations of vector fields”, Compositio Math., 26 (1973), 151–158 | MR | Zbl

[27] F. Wagemann, “A two-dimensional analogue of the Virasoro algebra”, J. Geom. Phys., 36 (2000), 103–116 | DOI | MR | Zbl