Structure of function algebras on foliated manifolds
Lobachevskii journal of mathematics, Tome 14 (2004), pp. 39-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a manifold $M$ with a foliation $F$ given by a locally free action of a commutative Lie group $H$. Also we assume that there exists an integrable Ehresmann connection on $(M; F)$ invariant with respect to the action of the group $H$. We get the structure of the restriction of the algebra $C_0(M)$ to the leaves in three partial cases. Also we consider a classification of the quasiinvariant measures and means on the leaves of $F$.
Keywords: group action Ehresmann connection, quasiinvariant measure, leaf function, invariant metric.
Mots-clés : Foliation, groupoid
@article{LJM_2004_14_a4,
     author = {P. N. Ivanshin},
     title = {Structure of function algebras on foliated manifolds},
     journal = {Lobachevskii journal of mathematics},
     pages = {39--54},
     publisher = {mathdoc},
     volume = {14},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2004_14_a4/}
}
TY  - JOUR
AU  - P. N. Ivanshin
TI  - Structure of function algebras on foliated manifolds
JO  - Lobachevskii journal of mathematics
PY  - 2004
SP  - 39
EP  - 54
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2004_14_a4/
LA  - en
ID  - LJM_2004_14_a4
ER  - 
%0 Journal Article
%A P. N. Ivanshin
%T Structure of function algebras on foliated manifolds
%J Lobachevskii journal of mathematics
%D 2004
%P 39-54
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2004_14_a4/
%G en
%F LJM_2004_14_a4
P. N. Ivanshin. Structure of function algebras on foliated manifolds. Lobachevskii journal of mathematics, Tome 14 (2004), pp. 39-54. http://geodesic.mathdoc.fr/item/LJM_2004_14_a4/

[1] Blumenthal R. A., Hebda J. J., “Complementary distributions which preserve the leaf geometry and applications to totally geodesic foliations”, Quart. J. Math. Oxford, 35 (1984), 383–392 | DOI | MR | Zbl

[2] Halmosh P. R., Lectures on ergodic theory, The mathematical society of Japan, Tokyo, 1956 | MR

[3] Fabel P., Characterizations of compactly almost periodic homeomorphisms of metrisable spaces, , v1 25 Jan 2002 arXiv: math.DS/0201251 | MR

[4] Hajduk B., Walczak R., Invariant metrics on G-spaces, , v1 28 May 2001 arXiv: math.GT/0105230 | MR

[5] Kornfeld I. P., Sinay Ya. G., Fomin S. V., Ergodicheskaya teoriya, Nauka, M., 1980, 384 pp. | MR

[6] Furstenberg H., “Strict ergodicity and transformation of the torus”, American Journal of Mathematics, LXXXIII:3 (1961), 573–602 | DOI | MR

[7] Loomis L. H., An introduction to abstract harmonic analysis, D. Van Nostrand Company, 1953 | MR | Zbl

[8] Opoitsev V. I., “Obraschenie prinzipa sjimayuschih otobrajenii”, Uspehi Mat. Nauk, XXXI:4 (1976), 169–199

[9] Renault J., The Radon-Nikodym problem for approximately proper equivalence relations, , 2002 arXiv: math.OA/0211369 | MR

[10] von Neumann J., “Almost Periodic Functions in a Group. I”, Transactions of the American Mathematical Society, 36:3 (1934), 445–492 | DOI | MR | Zbl

[11] Feldman J., Moore C. C., “Ergodic equivalence relations, cohomology, and von Neumann algebras, I”, Transactions of the American Mathematical Society, 234 (1977), 289–324 | DOI | MR | Zbl

[12] Moore C. C., Schochet C., Global analysis on foliated spaces, Springer-Verlag, 1988, 337 pp. | MR

[13] Bourbaki N., Éléments de mathématique. Livre III. Topologie générale, Hermann, Paris, 1956 | Zbl

[14] Ivanshin P. N., “Algebry funkcii na gruppoide sloeniya, porojdennogo localno svobodnim deistviem kommutativnoi gruppy”, Izv. Vyssh. Uchebn. Zaved. Mat., 2004, no. 5, 37–40 | MR