Structure of function algebras on foliated manifolds
Lobachevskii journal of mathematics, Tome 14 (2004), pp. 39-54

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a manifold $M$ with a foliation $F$ given by a locally free action of a commutative Lie group $H$. Also we assume that there exists an integrable Ehresmann connection on $(M; F)$ invariant with respect to the action of the group $H$. We get the structure of the restriction of the algebra $C_0(M)$ to the leaves in three partial cases. Also we consider a classification of the quasiinvariant measures and means on the leaves of $F$.
Keywords: group action Ehresmann connection, quasiinvariant measure, leaf function, invariant metric.
Mots-clés : Foliation, groupoid
@article{LJM_2004_14_a4,
     author = {P. N. Ivanshin},
     title = {Structure of function algebras on foliated manifolds},
     journal = {Lobachevskii journal of mathematics},
     pages = {39--54},
     publisher = {mathdoc},
     volume = {14},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2004_14_a4/}
}
TY  - JOUR
AU  - P. N. Ivanshin
TI  - Structure of function algebras on foliated manifolds
JO  - Lobachevskii journal of mathematics
PY  - 2004
SP  - 39
EP  - 54
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2004_14_a4/
LA  - en
ID  - LJM_2004_14_a4
ER  - 
%0 Journal Article
%A P. N. Ivanshin
%T Structure of function algebras on foliated manifolds
%J Lobachevskii journal of mathematics
%D 2004
%P 39-54
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2004_14_a4/
%G en
%F LJM_2004_14_a4
P. N. Ivanshin. Structure of function algebras on foliated manifolds. Lobachevskii journal of mathematics, Tome 14 (2004), pp. 39-54. http://geodesic.mathdoc.fr/item/LJM_2004_14_a4/