Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2004_14_a3, author = {G. Mustafa}, title = {A~double-sequence random iteration process for random fixed points of contractive type random operators}, journal = {Lobachevskii journal of mathematics}, pages = {33--38}, publisher = {mathdoc}, volume = {14}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2004_14_a3/} }
TY - JOUR AU - G. Mustafa TI - A~double-sequence random iteration process for random fixed points of contractive type random operators JO - Lobachevskii journal of mathematics PY - 2004 SP - 33 EP - 38 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2004_14_a3/ LA - en ID - LJM_2004_14_a3 ER -
G. Mustafa. A~double-sequence random iteration process for random fixed points of contractive type random operators. Lobachevskii journal of mathematics, Tome 14 (2004), pp. 33-38. http://geodesic.mathdoc.fr/item/LJM_2004_14_a3/
[1] R. E. Bruck, “The iteration solution of the equation $y\in x+Tx$ for a monotone operator $T$ in Hilbert spaces”, Bull. Amer. Math. Soc., 79 (1973), 1259–1262 | DOI | MR
[2] Beg and Shahzad N, “Random fixed point theorems for nonexpansive and contractive type random opeartors on Banach spaces”, J. Appl. Math. Stoc. Anal., 7 (1994), 569–580 | DOI | MR | Zbl
[3] C. E. Chidume and C. Moore, “Fixed point iteration for pseudocontractive maps”, Proc. Amer. Math. Soc., 127 (1999), 1163–1170 | DOI | MR | Zbl
[4] B. S. Choudhury, “Convergence of a random iteration scheme to a random fixed point”, J. Appl. Math. Stoc. Anal., 8 (1995), 139–142 | DOI | MR | Zbl
[5] J. A. Park, “Mann-iteration process for the fixed point of strictly pseudocontractive mappings in some Banach spaces”, J. Korean Soc., 31 (1994), 333–337 | MR | Zbl
[6] S. Ishikawa, “Fixed points by a new iteration method”, Proc. Amer. Math. Soc., 44 (1974), 147–150 | DOI | MR | Zbl
[7] Bharucha-Reid A T, “Fixed point theorems in probabilistic analysis”, Bull. Amer. Math. Soc., 82 (1976), 641–645 | DOI | MR
[8] C. Moore, “A double-sequence iteration process for fixed points of continuous pseudoconstructions”, Comput. Math. Appl., 43 (2002), 1585–1589 | DOI | MR | Zbl
[9] W. R. Mann, “Mean value methods in iteration”, Proc. Amer. Math. Soc., 4 (1953), 506–510 | DOI | MR | Zbl
[10] Adrian Constantin, “A random fixed point theorem for multifunctions”, Stoch. Anal. Appl., 12 (1994), 65–73 | DOI | MR | Zbl
[11] G. Mustafa, “Some random coincidence and random fixed point theorems for non-self hybrid contractions”, Lobachevskii J. Math., 18 (2005), 139–149 | MR | Zbl
[12] C. J. Himmelberg, “Measurable relations”, Fund. Math., 87 (1975), 53–72 | MR | Zbl
[13] B. E. Rhoades, “Fixed point iterations for certain nonlinear mappings”, J. Math. Anal. Appl., 183 (1994), 118–120 | DOI | MR | Zbl