A~double-sequence random iteration process for random fixed points of contractive type random operators
Lobachevskii journal of mathematics, Tome 14 (2004), pp. 33-38
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we introduce the concept of a Mann-type double-sequence random iteration scheme and show that if it is strongly convergent then it converges to a random fixed point of continuous contractive type random operators. The iteration is a random version of double-sequence iteration introduced by Moore (Comput. Math. Appl. 43(2002), 1585–1589).
Keywords:
Double-sequence iteration, Mann iteration, Strong convergence, Random Fixed point, Contractive mapping.
@article{LJM_2004_14_a3,
author = {G. Mustafa},
title = {A~double-sequence random iteration process for random fixed points of contractive type random operators},
journal = {Lobachevskii journal of mathematics},
pages = {33--38},
publisher = {mathdoc},
volume = {14},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2004_14_a3/}
}
TY - JOUR AU - G. Mustafa TI - A~double-sequence random iteration process for random fixed points of contractive type random operators JO - Lobachevskii journal of mathematics PY - 2004 SP - 33 EP - 38 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2004_14_a3/ LA - en ID - LJM_2004_14_a3 ER -
G. Mustafa. A~double-sequence random iteration process for random fixed points of contractive type random operators. Lobachevskii journal of mathematics, Tome 14 (2004), pp. 33-38. http://geodesic.mathdoc.fr/item/LJM_2004_14_a3/