Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2004_14_a1, author = {A. M. Bikchentaev}, title = {The continuity of multiplication for two topologies associated with {a~Semifinite} trace on von {Neumann} algebra}, journal = {Lobachevskii journal of mathematics}, pages = {17--24}, publisher = {mathdoc}, volume = {14}, year = {2004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2004_14_a1/} }
TY - JOUR AU - A. M. Bikchentaev TI - The continuity of multiplication for two topologies associated with a~Semifinite trace on von Neumann algebra JO - Lobachevskii journal of mathematics PY - 2004 SP - 17 EP - 24 VL - 14 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2004_14_a1/ LA - en ID - LJM_2004_14_a1 ER -
%0 Journal Article %A A. M. Bikchentaev %T The continuity of multiplication for two topologies associated with a~Semifinite trace on von Neumann algebra %J Lobachevskii journal of mathematics %D 2004 %P 17-24 %V 14 %I mathdoc %U http://geodesic.mathdoc.fr/item/LJM_2004_14_a1/ %G en %F LJM_2004_14_a1
A. M. Bikchentaev. The continuity of multiplication for two topologies associated with a~Semifinite trace on von Neumann algebra. Lobachevskii journal of mathematics, Tome 14 (2004), pp. 17-24. http://geodesic.mathdoc.fr/item/LJM_2004_14_a1/
[1] Bikchentaev A. M., “On minimality of the topology of convergence in measure on finite von Neumann algebras”, Kolmogorov and contemporary mathematics, Abstracts of international conference in commemoration of the centennial of A. N. Kolmogorov (Moscow, June 16–21, 2003), Moscow. Univ., 2003, 139–140, 915 pp.
[2] Böttcher A. et al., Lectures on operator theory and its applications, Fields Institute monographs, ed. P. Lancaster, Amer. Math. Soc., Providence, Rhode Island, 1996, 340 pp. | MR | Zbl
[3] Ciach L. J., “Some remarks on the convergence in measure and on a dominated sequence of operators measurable with respect to a semifinite von Neumann algebra”, Coll. Math., LV (1988), 109–121 | MR
[4] Dixmier J., Les algebres d'operateurs dans l'espace Hilbertien (algebres de von Neumann), Gauthier-Villars, Paris, 1969, 367 pp. | MR
[5] Dodds P. G., Dodds T. K., and de Pagter B., “Non-commutative Köthe duality”, Trans. Amer. Math. Soc., 339 (1993), 717–750 | DOI | MR | Zbl
[6] Dodds P. G., Dodds T. K., Sukochev F. A. and Tikhonov O. E., “A non-commutative Yosida-Hewitt theorem and applications to convex sets of measurable operators closed locally in measure”, Positivity, 9:3 (2005), 457–484 | DOI | MR | Zbl
[7] Kadison R. V. and Ringrose J. R., Fundamentals of the theory of operator algebras, V. I, Academic Press, New York – London – Paris, 1983, 398 pp. | MR | Zbl
[8] Nelson E., “Notes on non-commutative integration”, J. Funct. Anal., 15 (1974), 103–116 | DOI | MR | Zbl
[9] Segal I., “A non-commutative extension of abstract integration”, Ann. Math., 57 (1953), 401–457 | DOI | MR | Zbl
[10] Skvortsova G. Sh., “Weak sequential completeness of factor spaces of the space of integrable operators”, Russian Mathematics (Iz. VUZ), 45 (2002), 68–71 | MR | Zbl
[11] Terp M., $L^p$ spaces associated with von Neumann algebras, Notes, Copenhagen Univ., 1981, 100 pp.
[12] Yeadon F. J., “Non-commutative $L^p$-spaces”, Math. Proc. Cambridge Phil. Soc., 77 (1975), 91–102 | DOI | MR | Zbl