Submanifolds of an even-dimensional manifold structured by a~$\mathcal T$-parallel connection
Lobachevskii journal of mathematics, Tome 13 (2003), pp. 81-85

Voir la notice de l'article provenant de la source Math-Net.Ru

Even-dimensional manifolds $N$ structured by a $\mathcal T$-parallel connection have been defined and studied in [DR], [MRV]. In the present paper, we assume that $N$ carries a $(1,1)$-tensor field $J$ of square ${-1}$ and we consider an immersion $x : M\to N$. It is proved that any such $M$ is a CR-product [B] and one may decompose $M$ as $M=M_D\times M_{D^\perp}$, where $M_D$ is an invariant submanifold of $M$ and $M_{D\perp}$ is an antiinvariant submanifold of $M$. Some other properties regarding the immersion $x:M\to N$ are discussed.
@article{LJM_2003_13_a8,
     author = {K. Matsumoto and A. Mihai and D. Naitza},
     title = {Submanifolds of an even-dimensional manifold structured by a~$\mathcal T$-parallel connection},
     journal = {Lobachevskii journal of mathematics},
     pages = {81--85},
     publisher = {mathdoc},
     volume = {13},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2003_13_a8/}
}
TY  - JOUR
AU  - K. Matsumoto
AU  - A. Mihai
AU  - D. Naitza
TI  - Submanifolds of an even-dimensional manifold structured by a~$\mathcal T$-parallel connection
JO  - Lobachevskii journal of mathematics
PY  - 2003
SP  - 81
EP  - 85
VL  - 13
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2003_13_a8/
LA  - en
ID  - LJM_2003_13_a8
ER  - 
%0 Journal Article
%A K. Matsumoto
%A A. Mihai
%A D. Naitza
%T Submanifolds of an even-dimensional manifold structured by a~$\mathcal T$-parallel connection
%J Lobachevskii journal of mathematics
%D 2003
%P 81-85
%V 13
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2003_13_a8/
%G en
%F LJM_2003_13_a8
K. Matsumoto; A. Mihai; D. Naitza. Submanifolds of an even-dimensional manifold structured by a~$\mathcal T$-parallel connection. Lobachevskii journal of mathematics, Tome 13 (2003), pp. 81-85. http://geodesic.mathdoc.fr/item/LJM_2003_13_a8/