The embedding of an ordered semigroup into an le-semigroup
Lobachevskii journal of mathematics, Tome 13 (2003), pp. 45-50
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we prove the following: If $S$ is an ordered semigroup, then the set $\mathcal P(S)$ of all subsets of $S$ with the multiplication "$\circ$" on $\mathcal P(S)$ defined by "$A\circ B\colon=(AB]$ if $A,B\in\mathcal P(S)$, $A\neq\emptyset$, $B\neq\emptyset$ and $A\circ B\colon=\emptyset$ if $A=\emptyset$ or $B=\emptyset$ is an le-semigroup having a zero
element and $S$ is embedded in $\mathcal P(S)$.
@article{LJM_2003_13_a4,
author = {N. Kehayopulu and M. Tsingelis},
title = {The embedding of an ordered semigroup into an le-semigroup},
journal = {Lobachevskii journal of mathematics},
pages = {45--50},
publisher = {mathdoc},
volume = {13},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/LJM_2003_13_a4/}
}
N. Kehayopulu; M. Tsingelis. The embedding of an ordered semigroup into an le-semigroup. Lobachevskii journal of mathematics, Tome 13 (2003), pp. 45-50. http://geodesic.mathdoc.fr/item/LJM_2003_13_a4/