Lacunary self-similar fractal sets and intersection of cantor sets
Lobachevskii journal of mathematics, Tome 12 (2003), pp. 41-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem on intersection of Cantor sets was examined in many papers. To solve this problem, we introduce the notion of lacunary self-similar set. The main difference to the standard (Hutchinson) notion of self-similarity is that the set of similarities used in the construction may vary from step to step in a certain way. Using a modification of method described in [3], [4], we find the Hausdorff dimension of a lacunary self-similar set.
@article{LJM_2003_12_a2,
     author = {K. B. Igudesman},
     title = {Lacunary self-similar fractal sets and intersection of cantor sets},
     journal = {Lobachevskii journal of mathematics},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {12},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2003_12_a2/}
}
TY  - JOUR
AU  - K. B. Igudesman
TI  - Lacunary self-similar fractal sets and intersection of cantor sets
JO  - Lobachevskii journal of mathematics
PY  - 2003
SP  - 41
EP  - 50
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2003_12_a2/
LA  - en
ID  - LJM_2003_12_a2
ER  - 
%0 Journal Article
%A K. B. Igudesman
%T Lacunary self-similar fractal sets and intersection of cantor sets
%J Lobachevskii journal of mathematics
%D 2003
%P 41-50
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2003_12_a2/
%G en
%F LJM_2003_12_a2
K. B. Igudesman. Lacunary self-similar fractal sets and intersection of cantor sets. Lobachevskii journal of mathematics, Tome 12 (2003), pp. 41-50. http://geodesic.mathdoc.fr/item/LJM_2003_12_a2/

[1] Borovkov A. A., Probability theory, Science, M., 1986, 431 pp. (Russian) | MR

[2] G. Davis, Hu Tian-You, “On the structure of the intersection of two middle third Cantor sets”, Pabl. Mat., Barc., 39:1 (1995), 43–60 | MR | Zbl

[3] Falconer K. J., The Geometry of Fractal Sets, Cambridge University Press, 1985, 162 pp. | MR | Zbl

[4] Hutchinson J. E., “Fractals and self-similarity”, Indiana University Mathematics Journal, 30 (1981), 713–747 | DOI | MR | Zbl

[5] Kraft R., “Random intersections of thick Cantor sets”, Trans. Am. Math. Soc., 352:3 (2000), 1315–1328 | DOI | MR | Zbl

[6] Kraft R., “A golden Cantor set”, Am. Math. Mon., 105:8 (1998), 718–725 | DOI | MR | Zbl

[7] Li Wenxia, Hiao Dongmei, “Intersection of translations of Cantor triadic set”, Acta. Math. Sci. (Engl. Ed.), 19:2 (1999), 214–219 | MR | Zbl

[8] Williams R. F., “How big is the intersection of two thick Cantor sets?”, Continuum theory and dynamical systems, Proc. AMS-IMS-SIAM Jt. Summer Res. Conf. (Arcata/CA, USA, 1989), Contemp. Math., 117, 1991, 163–175 | MR | Zbl