Lacunary self-similar fractal sets and intersection of cantor sets
Lobachevskii journal of mathematics, Tome 12 (2003), pp. 41-50

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem on intersection of Cantor sets was examined in many papers. To solve this problem, we introduce the notion of lacunary self-similar set. The main difference to the standard (Hutchinson) notion of self-similarity is that the set of similarities used in the construction may vary from step to step in a certain way. Using a modification of method described in [3], [4], we find the Hausdorff dimension of a lacunary self-similar set.
@article{LJM_2003_12_a2,
     author = {K. B. Igudesman},
     title = {Lacunary self-similar fractal sets and intersection of cantor sets},
     journal = {Lobachevskii journal of mathematics},
     pages = {41--50},
     publisher = {mathdoc},
     volume = {12},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2003_12_a2/}
}
TY  - JOUR
AU  - K. B. Igudesman
TI  - Lacunary self-similar fractal sets and intersection of cantor sets
JO  - Lobachevskii journal of mathematics
PY  - 2003
SP  - 41
EP  - 50
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2003_12_a2/
LA  - en
ID  - LJM_2003_12_a2
ER  - 
%0 Journal Article
%A K. B. Igudesman
%T Lacunary self-similar fractal sets and intersection of cantor sets
%J Lobachevskii journal of mathematics
%D 2003
%P 41-50
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2003_12_a2/
%G en
%F LJM_2003_12_a2
K. B. Igudesman. Lacunary self-similar fractal sets and intersection of cantor sets. Lobachevskii journal of mathematics, Tome 12 (2003), pp. 41-50. http://geodesic.mathdoc.fr/item/LJM_2003_12_a2/