Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2003_12_a2, author = {K. B. Igudesman}, title = {Lacunary self-similar fractal sets and intersection of cantor sets}, journal = {Lobachevskii journal of mathematics}, pages = {41--50}, publisher = {mathdoc}, volume = {12}, year = {2003}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2003_12_a2/} }
K. B. Igudesman. Lacunary self-similar fractal sets and intersection of cantor sets. Lobachevskii journal of mathematics, Tome 12 (2003), pp. 41-50. http://geodesic.mathdoc.fr/item/LJM_2003_12_a2/
[1] Borovkov A. A., Probability theory, Science, M., 1986, 431 pp. (Russian) | MR
[2] G. Davis, Hu Tian-You, “On the structure of the intersection of two middle third Cantor sets”, Pabl. Mat., Barc., 39:1 (1995), 43–60 | MR | Zbl
[3] Falconer K. J., The Geometry of Fractal Sets, Cambridge University Press, 1985, 162 pp. | MR | Zbl
[4] Hutchinson J. E., “Fractals and self-similarity”, Indiana University Mathematics Journal, 30 (1981), 713–747 | DOI | MR | Zbl
[5] Kraft R., “Random intersections of thick Cantor sets”, Trans. Am. Math. Soc., 352:3 (2000), 1315–1328 | DOI | MR | Zbl
[6] Kraft R., “A golden Cantor set”, Am. Math. Mon., 105:8 (1998), 718–725 | DOI | MR | Zbl
[7] Li Wenxia, Hiao Dongmei, “Intersection of translations of Cantor triadic set”, Acta. Math. Sci. (Engl. Ed.), 19:2 (1999), 214–219 | MR | Zbl
[8] Williams R. F., “How big is the intersection of two thick Cantor sets?”, Continuum theory and dynamical systems, Proc. AMS-IMS-SIAM Jt. Summer Res. Conf. (Arcata/CA, USA, 1989), Contemp. Math., 117, 1991, 163–175 | MR | Zbl