Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2002_11_a5, author = {E. V. Sokolov}, title = {On the cyclic subgroup separability of free products of two groups with amalgamated subgroup}, journal = {Lobachevskii journal of mathematics}, pages = {27--38}, publisher = {mathdoc}, volume = {11}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2002_11_a5/} }
TY - JOUR AU - E. V. Sokolov TI - On the cyclic subgroup separability of free products of two groups with amalgamated subgroup JO - Lobachevskii journal of mathematics PY - 2002 SP - 27 EP - 38 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/LJM_2002_11_a5/ LA - en ID - LJM_2002_11_a5 ER -
E. V. Sokolov. On the cyclic subgroup separability of free products of two groups with amalgamated subgroup. Lobachevskii journal of mathematics, Tome 11 (2002), pp. 27-38. http://geodesic.mathdoc.fr/item/LJM_2002_11_a5/
[1] Ivanov. Gos. Ped. Inst. Ucen. Zap., 18 (1958), 49–60 (Russian)
[2] Kim G., “Cyclic subgroup separability of generalized free products”, Canad. Math. Bull., 36:3 (1993), 296–302 | MR | Zbl
[3] Baumslag G., “On the residual finiteness of generalized free products of nilpotent groups”, Trans. Amer. Math. Soc., 106 (1963), 193–209 | DOI | MR | Zbl
[4] Sib. Mat. Zh., 40 (1999), 395–407 (Russian) | MR | Zbl
[5] Kim G., Tang C. Y., “On generalized free products of residually finite $p$-groups”, J. Algebra, 201 (1998), 317–327 | DOI | MR | Zbl
[6] Mat. Zametki, 64 (1998), 3–8 (Russian) | DOI | MR | Zbl
[7] Sokolov E. V., The finite separability of cyclic subgroups of some generalized free products of groups, Submitted to Vestnik Mol. Uchen. (Ivanovo State University, Russia)
[8] Sokolov E. V., “On the approximability of some free products with an amalgamated subgroup by finite $p$-groups”, Chebyshevskiĭ Sb., 3:1(3) (2002), 97–102 (Russian) | MR | Zbl
[9] Higman G., “Amalgams of $p$-groups”, J. Algebra, 1 (1964), 301–305 | DOI | MR | Zbl
[10] Neumann H., “Generalized free products with amalgamated subgroups II”, Am. J. Math., 31 (1949), 491–540 | DOI | MR
[11] Nauka, Moscow, 1974 | Zbl