Small Digitwise perturbations of a~number make it normal to unrelated bases
Lobachevskii journal of mathematics, Tome 11 (2002), pp. 22-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $r,g\ge 2$ be integers such that $\log g/\log r$ is irrational. We show that under $r$-digitwise random perturbations of an expanded to base $r$ real number $x$, which are small enough to preserve $r$-digit asymptotic frequency spectrum of $x$, the $g$-adic digits of $x$ tend to have the most chaotic behaviour.
@article{LJM_2002_11_a4,
     author = {L. N. Pushkin},
     title = {Small {Digitwise} perturbations of a~number make it normal to unrelated bases},
     journal = {Lobachevskii journal of mathematics},
     pages = {22--25},
     publisher = {mathdoc},
     volume = {11},
     year = {2002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/LJM_2002_11_a4/}
}
TY  - JOUR
AU  - L. N. Pushkin
TI  - Small Digitwise perturbations of a~number make it normal to unrelated bases
JO  - Lobachevskii journal of mathematics
PY  - 2002
SP  - 22
EP  - 25
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/LJM_2002_11_a4/
LA  - en
ID  - LJM_2002_11_a4
ER  - 
%0 Journal Article
%A L. N. Pushkin
%T Small Digitwise perturbations of a~number make it normal to unrelated bases
%J Lobachevskii journal of mathematics
%D 2002
%P 22-25
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/LJM_2002_11_a4/
%G en
%F LJM_2002_11_a4
L. N. Pushkin. Small Digitwise perturbations of a~number make it normal to unrelated bases. Lobachevskii journal of mathematics, Tome 11 (2002), pp. 22-25. http://geodesic.mathdoc.fr/item/LJM_2002_11_a4/

[1] A. Baker, Transcendental number theory, Cambridge University Press, 1975 | MR | Zbl

[2] J. W. S. Cassels, “On a problem of Steinhause about normal numbers”, Colloquium Math., 7 (1959), 95–101 | MR | Zbl

[3] C. M. Colebrook and J. H. B. Kemperman, “On non-normal numbers”, Indagationes Math., 30 (1968), 1–11 | MR

[4] H. Davenport, P. Erdős and W. J. LeVeque, “On Weyl's criterion for uniform distribution”, Michigan Math. J., 10 (1963), 311–314 | DOI | MR | Zbl

[5] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, J. Wiley, New York etc., 1974 | MR | Zbl

[6] W. Schmidt, “On normal numbers”, Pacific J. Math., 10 (1960), 661–672 | MR | Zbl

[7] B. Volkmann, “On the Cassels–Schmidt theorem, I”, Bull. Sci. Math. 2$^e$ série, 108 (1984), 321–336 | MR | Zbl