Voir la notice de l'article provenant de la source Math-Net.Ru
@article{LJM_2002_11_a4, author = {L. N. Pushkin}, title = {Small {Digitwise} perturbations of a~number make it normal to unrelated bases}, journal = {Lobachevskii journal of mathematics}, pages = {22--25}, publisher = {mathdoc}, volume = {11}, year = {2002}, language = {en}, url = {http://geodesic.mathdoc.fr/item/LJM_2002_11_a4/} }
L. N. Pushkin. Small Digitwise perturbations of a~number make it normal to unrelated bases. Lobachevskii journal of mathematics, Tome 11 (2002), pp. 22-25. http://geodesic.mathdoc.fr/item/LJM_2002_11_a4/
[1] A. Baker, Transcendental number theory, Cambridge University Press, 1975 | MR | Zbl
[2] J. W. S. Cassels, “On a problem of Steinhause about normal numbers”, Colloquium Math., 7 (1959), 95–101 | MR | Zbl
[3] C. M. Colebrook and J. H. B. Kemperman, “On non-normal numbers”, Indagationes Math., 30 (1968), 1–11 | MR
[4] H. Davenport, P. Erdős and W. J. LeVeque, “On Weyl's criterion for uniform distribution”, Michigan Math. J., 10 (1963), 311–314 | DOI | MR | Zbl
[5] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, J. Wiley, New York etc., 1974 | MR | Zbl
[6] W. Schmidt, “On normal numbers”, Pacific J. Math., 10 (1960), 661–672 | MR | Zbl
[7] B. Volkmann, “On the Cassels–Schmidt theorem, I”, Bull. Sci. Math. 2$^e$ série, 108 (1984), 321–336 | MR | Zbl