New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization
Kybernetika, Tome 49 (2013) no. 6, pp. 883-896.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

A full Nesterov-Todd step infeasible interior-point algorithm is proposed for solving linear programming problems over symmetric cones by using the Euclidean Jordan algebra. Using a new approach, we also provide a search direction and show that the iteration bound coincides with the best known bound for infeasible interior-point methods.
Classification : 17C50, 90C25, 90C51
Keywords: interior-point methods; symmetric cone optimization; Euclidean Jordan algebra; polynomial complexity
@article{KYB_2013__49_6_a3,
     author = {Kheirfam, Behrouz and Mahdavi-Amiri, Nezam},
     title = {New complexity analysis of a full {Nesterov-} {Todd} step infeasible interior-point algorithm for symmetric optimization},
     journal = {Kybernetika},
     pages = {883--896},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2013},
     mrnumber = {3182646},
     zbl = {06285133},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013__49_6_a3/}
}
TY  - JOUR
AU  - Kheirfam, Behrouz
AU  - Mahdavi-Amiri, Nezam
TI  - New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization
JO  - Kybernetika
PY  - 2013
SP  - 883
EP  - 896
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2013__49_6_a3/
LA  - en
ID  - KYB_2013__49_6_a3
ER  - 
%0 Journal Article
%A Kheirfam, Behrouz
%A Mahdavi-Amiri, Nezam
%T New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization
%J Kybernetika
%D 2013
%P 883-896
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2013__49_6_a3/
%G en
%F KYB_2013__49_6_a3
Kheirfam, Behrouz; Mahdavi-Amiri, Nezam. New complexity analysis of a full Nesterov- Todd step infeasible interior-point algorithm for symmetric optimization. Kybernetika, Tome 49 (2013) no. 6, pp. 883-896. http://geodesic.mathdoc.fr/item/KYB_2013__49_6_a3/