Parameter influence on passive dynamic walking of a robot with flat feet
Kybernetika, Tome 49 (2013) no. 5, pp. 792-808
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The biped robot with flat feet and fixed ankles walking down a slope is a typical impulsive dynamic system. Steady passive gaits for such mechanism can be induced on certain shallow slopes without actuation. The steady gaits can be described by using stable non-smooth limit cycles in phase plane. In this paper, it is shown that the robot gaits are affected by three parameters, namely the ground slope, the length of the foot, and the mass ratio of the robot. As the ground slope is gradually increased, the gaits exhibit universal period doubling bifurcations leading to chaos. Meanwhile, the phenomena of period doubling bifurcations also occur by increasing either the foot length or the mass ratio of the robot. Theory analysis and numerical simulations are given to verify our conclusion.
Classification :
34H20, 70E60, 93A14, 93C10, 93D15, 93D21
Keywords: biped robot; impulse dynamic systems; limit cycles; bifurcations; chaos
Keywords: biped robot; impulse dynamic systems; limit cycles; bifurcations; chaos
@article{KYB_2013__49_5_a8,
author = {Lin, Xiangze and Du, Haibo and Li, Shihua},
title = {Parameter influence on passive dynamic walking of a robot with flat feet},
journal = {Kybernetika},
pages = {792--808},
publisher = {mathdoc},
volume = {49},
number = {5},
year = {2013},
mrnumber = {3182641},
zbl = {1278.93008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2013__49_5_a8/}
}
TY - JOUR AU - Lin, Xiangze AU - Du, Haibo AU - Li, Shihua TI - Parameter influence on passive dynamic walking of a robot with flat feet JO - Kybernetika PY - 2013 SP - 792 EP - 808 VL - 49 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2013__49_5_a8/ LA - en ID - KYB_2013__49_5_a8 ER -
Lin, Xiangze; Du, Haibo; Li, Shihua. Parameter influence on passive dynamic walking of a robot with flat feet. Kybernetika, Tome 49 (2013) no. 5, pp. 792-808. http://geodesic.mathdoc.fr/item/KYB_2013__49_5_a8/