The strongest t-norm for fuzzy metric spaces
Kybernetika, Tome 49 (2013) no. 1, pp. 141-148.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, we prove that for a given positive continuous t-norm there is a fuzzy metric space in the sense of George and Veeramani, for which the given t-norm is the strongest one. For the opposite problem, we obtain that there is a fuzzy metric space for which there is no strongest t-norm. As an application of the main results, it is shown that there are infinite non-isometric fuzzy metrics on an infinite set.
Classification : 62A10, 93E12
Keywords: fuzzy metric space; t-norm; isometry; analysis
@article{KYB_2013__49_1_a9,
     author = {Qiu, Dong and Zhang, Weiquan},
     title = {The strongest t-norm for fuzzy metric spaces},
     journal = {Kybernetika},
     pages = {141--148},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013__49_1_a9/}
}
TY  - JOUR
AU  - Qiu, Dong
AU  - Zhang, Weiquan
TI  - The strongest t-norm for fuzzy metric spaces
JO  - Kybernetika
PY  - 2013
SP  - 141
EP  - 148
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2013__49_1_a9/
LA  - en
ID  - KYB_2013__49_1_a9
ER  - 
%0 Journal Article
%A Qiu, Dong
%A Zhang, Weiquan
%T The strongest t-norm for fuzzy metric spaces
%J Kybernetika
%D 2013
%P 141-148
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2013__49_1_a9/
%G en
%F KYB_2013__49_1_a9
Qiu, Dong; Zhang, Weiquan. The strongest t-norm for fuzzy metric spaces. Kybernetika, Tome 49 (2013) no. 1, pp. 141-148. http://geodesic.mathdoc.fr/item/KYB_2013__49_1_a9/