Linear fractional program under interval and ellipsoidal uncertainty
Kybernetika, Tome 49 (2013) no. 1, pp. 181-187.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

In this paper, the robust counterpart of the linear fractional programming problem under linear inequality constraints with the interval and ellipsoidal uncertainty sets is studied. It is shown that the robust counterpart under interval uncertainty is equivalent to a larger linear fractional program, however under ellipsoidal uncertainty it is equivalent to a linear fractional program with both linear and second order cone constraints. In addition, for each case we have studied the dual problems associated with the robust counterparts. It is shown that in both cases, either interval or ellipsoidal uncertainty, the dual of robust counterpart is equal to the optimistic counterpart of dual problem.
Classification : 90C05, 90C25, 90C32
Keywords: linear fractional program; robust optimization; uncertainty; second order cone
@article{KYB_2013__49_1_a12,
     author = {Salahi, Maziar and Fallahi, Saeed},
     title = {Linear fractional program under interval and ellipsoidal uncertainty},
     journal = {Kybernetika},
     pages = {181--187},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2013__49_1_a12/}
}
TY  - JOUR
AU  - Salahi, Maziar
AU  - Fallahi, Saeed
TI  - Linear fractional program under interval and ellipsoidal uncertainty
JO  - Kybernetika
PY  - 2013
SP  - 181
EP  - 187
VL  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2013__49_1_a12/
LA  - en
ID  - KYB_2013__49_1_a12
ER  - 
%0 Journal Article
%A Salahi, Maziar
%A Fallahi, Saeed
%T Linear fractional program under interval and ellipsoidal uncertainty
%J Kybernetika
%D 2013
%P 181-187
%V 49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2013__49_1_a12/
%G en
%F KYB_2013__49_1_a12
Salahi, Maziar; Fallahi, Saeed. Linear fractional program under interval and ellipsoidal uncertainty. Kybernetika, Tome 49 (2013) no. 1, pp. 181-187. http://geodesic.mathdoc.fr/item/KYB_2013__49_1_a12/