Leader-following consensus of multiple linear systems under switching topologies: An averaging method
Kybernetika, Tome 48 (2012) no. 6, pp. 1194-1210
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
The leader-following consensus of multiple linear time invariant (LTI) systems under switching topology is considered. The leader-following consensus problem consists of designing for each agent a distributed protocol to make all agents track a leader vehicle, which has the same LTI dynamics as the agents. The interaction topology describing the information exchange of these agents is time-varying. An averaging method is proposed. Unlike the existing results in the literatures which assume the LTI agents to be neutrally stable, we relax this condition, only making assumption that the LTI agents are stablizable and detectable. Observer-based leader-following consensus is also considered.
@article{KYB_2012__48_6_a7,
author = {Ni, Wei and Wang, Xiaoli and Xiong, Chun},
title = {Leader-following consensus of multiple linear systems under switching topologies: {An} averaging method},
journal = {Kybernetika},
pages = {1194--1210},
publisher = {mathdoc},
volume = {48},
number = {6},
year = {2012},
mrnumber = {3052881},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012__48_6_a7/}
}
TY - JOUR AU - Ni, Wei AU - Wang, Xiaoli AU - Xiong, Chun TI - Leader-following consensus of multiple linear systems under switching topologies: An averaging method JO - Kybernetika PY - 2012 SP - 1194 EP - 1210 VL - 48 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/KYB_2012__48_6_a7/ LA - en ID - KYB_2012__48_6_a7 ER -
%0 Journal Article %A Ni, Wei %A Wang, Xiaoli %A Xiong, Chun %T Leader-following consensus of multiple linear systems under switching topologies: An averaging method %J Kybernetika %D 2012 %P 1194-1210 %V 48 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/KYB_2012__48_6_a7/ %G en %F KYB_2012__48_6_a7
Ni, Wei; Wang, Xiaoli; Xiong, Chun. Leader-following consensus of multiple linear systems under switching topologies: An averaging method. Kybernetika, Tome 48 (2012) no. 6, pp. 1194-1210. http://geodesic.mathdoc.fr/item/KYB_2012__48_6_a7/