An iterative algorithm for testing solvability of max-min interval systems
Kybernetika, Tome 48 (2012) no. 5, pp. 879-889.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

This paper is dealing with solvability of interval systems of linear equations in max-min algebra. Max-min algebra is the algebraic structure in which classical addition and multiplication are replaced by $\oplus$ and $\otimes$, where $a\oplus b=\max\{a,b\}, a\otimes b=\min\{a, b\}$. The notation ${\mathbb A}\otimes x={\mathbb b}$ represents an interval system of linear equations, where ${\mathbb A}=[\underline{A},\overline{A}]$ and ${\mathbb b}=[\underline{b},\overline{b}]$ are given interval matrix and interval vector, respectively. We can define several types of solvability of interval systems. In this paper, we define the T4 and T5 solvability and give necessary and sufficient conditions for them.
Classification : 15A06, 65G30
Keywords: max-min algebra; interval system; T4-vector; T4 solvability; T5-vector; T5 solvability
@article{KYB_2012__48_5_a3,
     author = {My\v{s}kov\'a, Helena},
     title = {An iterative algorithm for testing solvability of max-min interval systems},
     journal = {Kybernetika},
     pages = {879--889},
     publisher = {mathdoc},
     volume = {48},
     number = {5},
     year = {2012},
     mrnumber = {3086857},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012__48_5_a3/}
}
TY  - JOUR
AU  - Myšková, Helena
TI  - An iterative algorithm for testing solvability of max-min interval systems
JO  - Kybernetika
PY  - 2012
SP  - 879
EP  - 889
VL  - 48
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2012__48_5_a3/
LA  - en
ID  - KYB_2012__48_5_a3
ER  - 
%0 Journal Article
%A Myšková, Helena
%T An iterative algorithm for testing solvability of max-min interval systems
%J Kybernetika
%D 2012
%P 879-889
%V 48
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2012__48_5_a3/
%G en
%F KYB_2012__48_5_a3
Myšková, Helena. An iterative algorithm for testing solvability of max-min interval systems. Kybernetika, Tome 48 (2012) no. 5, pp. 879-889. http://geodesic.mathdoc.fr/item/KYB_2012__48_5_a3/