Bounds of the matrix eigenvalues and its exponential by Lyapunov equation
Kybernetika, Tome 48 (2012) no. 5, pp. 865-878.

Voir la notice de l'article provenant de la source Czech Digital Mathematics Library

We are concerned with bounds of the matrix eigenvalues and its exponential. Combining the Lyapunov equation with the weighted logarithmic matrix norm technique, four sequences are presented to locate eigenvalues of a matrix. Based on the relations between the real parts of the eigenvalues and the weighted logarithmic matrix norms, we derive both lower and upper bounds of the matrix exponential, which complement and improve the existing results in the literature. Some numerical examples are also given.
Classification : 15A18, 15A60, 34D20
Keywords: Lyapunov equation; weighted logarithmic matrix norm; location of eigenvalues; bounds of the matrix exponential
@article{KYB_2012__48_5_a2,
     author = {Hu, Guang-Da and Mitsui, Taketomo},
     title = {Bounds of the matrix eigenvalues and its exponential by {Lyapunov} equation},
     journal = {Kybernetika},
     pages = {865--878},
     publisher = {mathdoc},
     volume = {48},
     number = {5},
     year = {2012},
     mrnumber = {3086856},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2012__48_5_a2/}
}
TY  - JOUR
AU  - Hu, Guang-Da
AU  - Mitsui, Taketomo
TI  - Bounds of the matrix eigenvalues and its exponential by Lyapunov equation
JO  - Kybernetika
PY  - 2012
SP  - 865
EP  - 878
VL  - 48
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/KYB_2012__48_5_a2/
LA  - en
ID  - KYB_2012__48_5_a2
ER  - 
%0 Journal Article
%A Hu, Guang-Da
%A Mitsui, Taketomo
%T Bounds of the matrix eigenvalues and its exponential by Lyapunov equation
%J Kybernetika
%D 2012
%P 865-878
%V 48
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/KYB_2012__48_5_a2/
%G en
%F KYB_2012__48_5_a2
Hu, Guang-Da; Mitsui, Taketomo. Bounds of the matrix eigenvalues and its exponential by Lyapunov equation. Kybernetika, Tome 48 (2012) no. 5, pp. 865-878. http://geodesic.mathdoc.fr/item/KYB_2012__48_5_a2/