Constructing families of symmetric dependence functions
Kybernetika, Tome 48 (2012) no. 5, pp. 977-987
Voir la notice de l'article provenant de la source Czech Digital Mathematics Library
We construct two pairs $(\mathscr{A}^{[1]}_{F}, \mathscr{A}^{[2]}_{F})$ and $(\mathscr{A}^{[1]}_{\psi}, \mathscr{A}^{[2]}_{\psi})$ of ordered parametric families of symmetric dependence functions. The families of the first pair are indexed by regular distribution functions $F$, and those of the second pair by elements $\psi$ of a specific function family $\mathbb\psi$. We also show that all solutions of the differential equation $\frac{{\mathrm d}y}{{\mathrm d}u}=\frac{\alpha(u)}{u(1-u)}y$ for $\alpha$ in a certain function family ${\mathbb\alpha}_{\rm s}$ are symmetric dependence functions.
Classification :
62H20
Keywords: archimax copula; copula; dependence function; generator of a dependence function
Keywords: archimax copula; copula; dependence function; generator of a dependence function
@article{KYB_2012__48_5_a10,
author = {Wysocki, W{\l}odzimierz},
title = {Constructing families of symmetric dependence functions},
journal = {Kybernetika},
pages = {977--987},
publisher = {mathdoc},
volume = {48},
number = {5},
year = {2012},
mrnumber = {3086864},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2012__48_5_a10/}
}
Wysocki, Włodzimierz. Constructing families of symmetric dependence functions. Kybernetika, Tome 48 (2012) no. 5, pp. 977-987. http://geodesic.mathdoc.fr/item/KYB_2012__48_5_a10/